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Abstract. Recently, it has been demonstrated that a solution set that
is better than the �nal population can be obtained by subset selection
in some studies on evolutionary multi-objective optimization. The main
challenge in this type of subset selection is how to e�ciently handle a
huge candidate solution set, especially when the hypervolume-based sub-
set selection is used for many-objective optimization. In this paper, we
propose an e�cient two-stage greedy algorithm for hypervolume-based
subset selection. In each iteration of the proposed greedy algorithm, a
small number of promising candidate solutions are selected in the �rst
stage using the rough hypervolume contribution approximation. In the
second stage, a single solution among them is selected using the more
precise approximation. Experimental results show that the proposed al-
gorithm is much faster than state-of-the-art hypervolume-based greedy
subset selection algorithms at the cost of a slight deterioration of the
selected subset quality.

Keywords: Evolutionary multi-objective optimization · Hypervolume
subset selection · Two-stage hypervolume contribution approximation.

1 Introduction

Recently, the use of an unbounded external archive was examined in many stud-
ies [1�10] in the evolutionary multi-objective optimization (EMO) community. It
was shown in [6�8] that the selected subset from the unbounded external archive
is usually better than the �nal population. This is because in general the �nal
population is not the best subset of all examined solutions. For example, �nal
solutions can be dominated by other generated and discarded solutions in previ-
ous generations [10]. The main di�culty in subset selection from the unbounded
external archive is a huge candidate solution set. For example, more than two
million non-dominated solutions are included in a candidate solution set in [7].
Thus, e�cient subset selection algorithms are needed.

Hypervolume subset selection (HSS) is a popular research topic since the
hypervolume indicator [11] is the only performance indicator with Pareto com-
pliant property [12]. In general, the HSS problem is to select a subset Ssub from
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a candidate set Sc so that the hypervolume of Ssub is maximized. Thus, the HSS
problem can be formalized as follows:

S∗sub = arg max
Ssub⊂Sc,|Ssub|=k

HV (Ssub), (1)

where S∗sub is the optimal subset with k solutions, Sc is the given set of n can-
didate solutions (i.e., |Sc| = n), and HV (Ssub) is the hypervolume of Ssub. HSS
methods can be classi�ed into four categories [13]: exact methods, evolutionary
methods, local search methods, and greedy methods.

Among them, the greedy methods [14�18] are the most well-known since
they can obtain a near optimal subset (i.e., (1 − 1/e) to the optimal subset is
guaranteed [19]) within a reasonable computation time. Bradstreet et al. [14,15]
proposed two basic greedy HSS methods: the greedy reduction and the greedy
inclusion. However, the e�ciency of the basic greedy HSS methods is low. Jiang
et al. [16] proposed a hypervolume contribution update strategy that can signi�-
cantly reduce the computation time of the basic greedy HSS methods. To further
improve the e�ciency of the greedy HSS method, Chen et al. [17] proposed a
lazy greedy inclusion HSS method. In the lazy greedy HSS method, the submod-
ular property of the hypervolume indicator [20] is utilized to avoid unnecessary
hypervolume contribution calculations. Currently, the lazy greedy HSS method
is the most e�cient greedy HSS method.

Since the above-mentioned greedy HSS methods use the exact hypervol-
ume contribution calculation, their computation time is very large in high-
dimensional cases (i.e., many-objective problems). This is because the time com-
plexity of the exact hypervolume contribution calculation is O(km−1) [13] where
k is the number of solutions involved in hypervolume contribution calculation
and m is the dimension of solutions (i.e., the number of objectives). To address
this issue, Shang et al. [18] proposed a greedy approximated HSS method which
uses an R2-based hypervolume contribution approximation method [21] instead
of the exact calculation. As a result, the greedy approximated HSS method is
much faster than the exact greedy HSS methods (including the lazy greedy HSS
method). The selected subset quality (i.e., hypervolume value) by the approxi-
mated method is slightly worse than that by the exact HSS methods.

As pointed out in [22], the computation time of the greedy HSS methods
(both the exact and approximated methods) severely increases as the number
of candidate solutions increases. This is because the greedy methods need to
examine all the unselected candidate solutions in each iteration. Thus, the above-
mentioned greedy methods are not applicable to the large-scale subset selection
where the number of candidate solutions is huge (e.g., more than 2,000,000 non-
dominated solutions in the unbounded external archive [7]).

In this paper, we propose a two-stage greedy approximated HSS method to
e�ciently select a subset from a huge candidate solution set. In the proposed
method, we use a two-stage hypervolume contribution approximation method for
a hypervolume-based EMO algorithm to select a good solution in each iteration
of greedy inclusion. Each iteration is divided into two stages. In the �rst stage,
we roughly approximate the hypervolume contribution of each unselected can-
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didate solution. Then, we preselect only a small number of promising candidate
solutions. In the second stage, the hypervolume contribution of each preselected
promising solution is more precisely approximated and one of them is selected.
In this manner, we do not have to precisely approximate the hypervolume con-
tribution of each candidate solution. Thus, the proposed two-stage method is
much faster than other greedy methods for large-scale subset selection.

The remainder of this paper is organized as follows. In Section 2, the exist-
ing greedy HSS methods are brie�y reviewed. The proposed two-stage greedy
approximated HSS method is described in Section 3. Experimental results are
reported in Section 4 to demonstrate the superiority of the proposed method.
Finally, the conclusion is given in Section 5.

2 Greedy Hypervolume Subset Selection

For a large candidate set (i.e., k � n), the use of greedy reduction is unrealistic.
Thus, in this paper, we focus only on greedy inclusion HSS methods where k
solutions are selected from the candidate set Sc with n solutions one by one. In
this section, we explain greedy exact and greedy approximated HSS methods.

2.1 Greedy Exact HSS Methods

Basic greedy inclusion HSS (GI-HSS [14]) The framework of the basic
greedy inclusion HSS method (GI-HSS) is shown in Algorithm 1, which is also
the framework of all greedy HSS methods. As explained in Section 1, the size
of the candidate solution set Sc is n (i.e., |Sc| = n) and the size of the subset
Ssub to be selected is k (i.e., |Ssub| = k). First, Ssub is empty. Then, a candidate
solution is selected from Sc and added to Ssub in each iteration one by one. GI-
HSS is terminated when |Ssub| reaches k. In each iteration, GI-HSS calculates
the hypervolume contribution of each unselected candidate solution. Then, the
candidate solution with the largest hypervolume contribution is added to Ssub.
Since the hypervolume contribution calculation is time-consuming, the e�ciency
of GI-HSS is low, especially when n is large (i.e., k � n).

Algorithm 1: Basic framework of greedy methods

input : Sc (candidate solution set), k (selected subset size)
output: Ssub (selected subset)
begin

1 Ssub ←− ∅;
2 while |Ssub| < k do
3 Calculate the hypervolume contribution to Ssub of each solution s in

Sc;
4 Select the best candidate solution a with the largest hypervolume

contribution to Ssub from Sc;
5 Ssub ←− Ssub ∪ {a}; Sc ←− Sc\{a};
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Greedy inclusion HSS with hypervolume contribution updating (UGI-
HSS [16]) To improve the e�ciency of the basic greedy HSS method, Jiang
et al. [16] proposed a hypervolume update strategy. In each iteration, GI-HSS
calculates the hypervolume contribution of each candidate solution whereas UGI-
HSS updates their hypervolume contribution more e�ciently. As a result, UGI-
HSS is much faster than GI-HSS.

Lazy greedy inclusion HSS (LGI-HSS [17]) The UGI-HSS method im-
proves the e�ciency of the basic greedy HSS method by reducing the com-
putation time of the hypervolume contribution calculation for each candidate
solution. In contrast, the LGI-HSS method improves the e�ciency of GI-HSS by
reducing the number of hypervolume contribution calculations. That is, LGI-HSS
uses the submodular property of the hypervolume indicator [20] to avoid unnec-
essary hypervolume contribution calculations. Currently, the LGI-HSS method
is the most e�cient greedy exact HSS method.

2.2 Greedy Approximated HSS Method

Since the time complexity of hypervolume contribution calculation increases ex-
ponentially as the number of objectives m increases [13], the greedy exact HSS
methods are impractical in high-dimensional cases (e.g., m > 10). To overcome
this issue, a greedy approximated HSS method (GAHSS [18]) was proposed.
In GAHSS, the hypervolume contribution of each candidate solution is approxi-
mated using the R2-based hypervolume contribution approximation method [21].
In this subsection, we brie�y explain the mechanism of the R2-based hypervol-
ume contribution approximation method and the framework of GAHSS.
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Fig. 1. Illustration of R2-based hypervolume contribution approximation
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R2-based hypervolume contribution approximation (R2-HVC [21])
Fig. 1 illustrates the R2-based hypervolume contribution approximation method.
Solutions s1, s2 and s form a solution set Sc, and r is the reference point. To
approximate the hypervolume contribution of the solution s, R2-HVC uses a
vector set Λ (i.e., Λ = {v1,v2} in Fig. 1) to detect the boundary of the hy-
pervolume contribution region of s (i.e., shaded region in Fig. 1). The average
length of the line segment for each vector from s to the boundary (e.g., d1,1 for
v1 and d2,2 for v2) is used as the hypervolume contribution approximation for
s. Thus, the computation time and the approximation quality directly depends
on the number of vectors in Λ.

For each vector, to obtain the corresponding line segment (e.g., d1,1 for v1 in
Fig. 1), we calculate the length of each of all line segments determined by other
solutions in Sc and the reference point (e.g., d1,1, d2,1 and dr,1 in Fig. 1). The
line segment with the minimum length (e.g., d1,1 for v1) is the corresponding
line segment and is used for hypervolume contribution approximation.

To approximate the hypervolume contribution of each candidate solution
si ∈ Sc to the subset Ssub (i.e., HV C(si, Ssub, r)), we need to calculate the
length of each of all related line segments and store them in a matrix Mi as

Mi =


di1,1 di1,2 · · · di1,|Λ|
di2,1 di2,2 · · · di2,|Λ|
...

...
. . .

...
di|Ssub|,1 d

i
|Ssub|,2 · · · d

i
|Ssub|,|Λ|

dir,1 dir,2 · · · dir,|Λ|

. (2)

In this matrix Mi, each row refers to the corresponding solution in Ssub or
the reference point r, and each column refers to the corresponding vector in the
vector set Λ. The hypervolume contribution of si is approximated by the average
of the minimum value in each column (i.e.,min(dij) = min{di1,j , ..., di|Ssub|,j , d

i
r,j})

as (min(di1) + . . .+min(di|Λ|))/|Λ|. For more details, see [21].

Greedy approximated HSS (GAHSS [18]) In GAHSS, a tensor Tmin is
used to calculate the approximated hypervolume contribution of each candidate
solution. Its structure is

Tmin =


min(d11) min(d12) · · · min(d1|Λ|)

...
...

. . .
...

min(d
|Sc|
1 ) min(d

|Sc|
2 ) · · · min(d

|Sc|
|Λ| )

. (3)

Each row of Tmin refers to the corresponding candidate solution (from Mi in
Eq. (2)), and each column of Tmin refers to the corresponding vector. For a
candidate solution si ∈ Sc, each value min(dij) in Tmin is the minimum value

of the j-th column of Mi (i.e., min(dij) = min{di1,j , . . . , di|Ssub|,j , d
i
r,j}). Then,

each row of Tmin is used to approximate the hypervolume contribution of each
candidate solution in Sc.
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Algorithm 2: Greedy approximated HSS

input : Sc (candidate solution set), k (selected subset size), Λ (vector set)
output: Ssub (selected subset)
begin

1 Ssub ←− ∅;
2 Calculate the tensor Tmin in (3) using the reference point r for all

candidate solutions in Sc and all vectors in Λ;
3 while |Ssub| < k do
4 Approximate the hypervolume contribution to Ssub of each candidate

solution in Sc using Tmin;
5 Select the best candidate solution a with the largest hypervolume

contribution from Sc;
6 Ssub ←− Ssub ∪ {a}; Sc ←− Sc\{a};
7 Calculate the tensor T in (4) using a for all candidate solutions in Sc

and all vectors in Λ;
8 Update Tmin using Tmin and T ;

When a new solution a is added to the subset Ssub, we �rst calculate a tensor
T using a for all candidate solutions in Sc and all vectors in Λ as:

T =


d1a,1 d1a,2 · · · d1a,|Λ|
...

...
. . .

...

d
|Sc|
a,1 d

|Sc|
a,2 · · · d

|Sc|
a,|Λ|

. (4)

Similar to Tmin, each row of T refers to the corresponding candidate solution,
and each column of T refers to the corresponding vector. The i-th row of T is a
new row ofMi: (d

i
a,1, . . . , d

i
a,|Λ|). In this manner, each element of Tmin is updated

as min(dij) = min{min(dij), d
i
a,j}.

The framework of GAHSS is shown in Algorithm 2. As in GI-HSS, we �rst
initialize the subset Ssub as an empty set. Then, the tensor Tmin is initialized
as the tensor using the reference point r for each candidate solution i and each
vector j (i.e., min(dij) = dir,j , where d

i
r,j is an element of Mi). In each itera-

tion, we �rst use Tmin to calculate the approximated hypervolume contribution
of each candidate solution. Then, the best candidate solution with the largest
approximated hypervolume contribution is added to Ssub, and the tensor T is
calculated based on the newly added solution. Finally, the tensor Tmin is updated
using Tmin and T .

3 Proposed Two-Stage Greedy Approximated HSS

As shown in Algorithm 2, GAHSS calculates the tensor T using the newly added
solution a for all candidate solutions in Sc and all vectors in Λ in each iteration.
Thus, its computation time can be unacceptably large when the size of the
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candidate set is huge. To address this issue, we propose a two-stage GAHSS
(TGAHSS) method in this paper. In each iteration of TGAHSS, we select a small
number of promising candidate solutions from Sc in the �rst stage. Then, we
select a single candidate solution from them in the second stage. The basic idea
of the proposed two-stage method is to use a di�erent vector set for hypervolume
contribution approximation in each stage. By using a small vector set (i.e., only
a small number of vectors) in the �rst stage, we can signi�cantly decrease the
computation time without severely degrading the quality of the selected subset.

We need two tensors T 1
min and T 2

min in TGAHSS for the �rst and second
stages, respectively. Let the two vector sets for the �rst and second stages be
Λ1 and Λ2 (where |Λ1| > |Λ2|), respectively. The number of candidate solutions
used in the second stage is n2. T

1
min and T 2

min in TGAHSS are described as:

T 1
min =


min(d11) · · · min(d1|Λ1|)

...
. . .

...

min(d
|Sc|
1 ) · · · min(d

|Sc|
|Λ1|)

 , T 2
min =


min(d11) · · · min(d1|Λ2|)

...
. . .

...

min(d
|Sc|
1 ) · · · min(d

|Sc|
|Λ2|)

. (5)

Each row of T 1
min and T 2

min refers to the corresponding candidate solution, and
each column of T 1

min and T 2
min refers to the corresponding vector in Λ1 and Λ2,

respectively. In each iteration of TGAHSS, we update the entire T 1
min and only

a small part of T 2
min.

The framework of TGAHSS is shown in Algorithm 3. Di�erent from GAHSS,
we need to initialize two tensors T 1

min and T 2
min at the beginning (Line 2 in

Algorithm 3). In each iteration, we �rst use T 1
min to roughly approximate the

hypervolume contribution of each candidate solution and select n2 promising
candidate solutions (Lines 4-5 in Algorithm 3). In the second stage, we only
need to update a small part of T 2

min, instead of the entire T 2
min. That is, only

n2 rows of T 2
min, which are related to the n2 promising candidate solutions,

need to be updated. After that, the hypervolume contribution of each of the
n2 candidate solutions is approximated (using much more vectors in the second
stage than those in the �rst stage: |Λ1| > |Λ2|) from the n2 rows of T 2

min (Lines
6-7 in Algorithm 3). Then, the best solution a with the largest approximated
hypervolume contribution is selected from the n2 promising candidate solutions,
and added to the subset Ssub (Line 9 in Algorithm 3). Finally, the �rst tensor
T 1
min is updated using the newly added solution a (Lines 10, 11 in Algorithm 3).

4 Experimental Results

In this section, we �rst examine the proposed two-stage greedy approximated
HSS (TGAHSS) method under di�erent parameter settings. Then, the proposed
method is compared with two state-of-the-art methods: the greedy approximated
HSS (GAHSS [18]) and the lazy greedy inclusion HSS (LGI-HSS [17]).
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Algorithm 3: Two-stage greedy approximated HSS

input : Sc (candidate solution set), k (selected subset size), Λ1 (�rst-stage
vector set), Λ2 (second-stage vector set)

output: Ssub (selected subset)
begin

1 Ssub ←− ∅;
2 Calculate the tensor T 1

min and T 2
min in (5) using the reference point r for

all candidate solutions in Sc and all vectors in Λ1 and Λ2, respectively;
3 while |Ssub| < k do
4 /* First stage */
5 Approximate the hypervolume contribution to Ssub of each candidate

solution in Sc using T
1
min;

6 Select n2 candidate solutions with the largest hypervolume
contributions from Sc;

7 /* Second stage */
8 Update the corresponding n2 rows of T 2

min which are related to the n2
candidate solutions;

9 Approximate the hypervolume contribution of each of the n2 candidate
solutions to Ssub using the corresponding rows of T

2
min;

10 Select the best solution a with the largest approximated hypervolume
contribution from the n2 candidate solutions;

11 Ssub ←− Ssub ∪ {a}; Sc ←− Sc\{a};
12 /* Update of T 1

min */
13 Calculate the tensor T 1 using a for all the candidate solutions and all

vectors in Λ1;
14 Update T 1

min using T 1
min and T 1;

4.1 Experimental Settings

We use eight candidate solution sets in [24]1, which are generated in the fol-
lowing manner. First, under the termination condition of 100,000 solution eval-
uations, NSGA-III [25] is applied to eight test problems: DTLZ1-2 [26] and
Minus-DTLZ1-2 [27] with �ve and ten objectives (i.e., m = 5, 10). Next, all ex-
amined solutions (i.e., 100,000 solutions) are stored for each test problem. Then,
all non-dominated solutions among the stored solutions are used as a candidate
solution set for each test problem. The size of each candidate solution set (i.e.,
n) is shown in Table 1.

The selected subset size k is set to 100. As suggested in [28], the reference
point for hypervolume subset selection is speci�ed as (1 + 1/H) × nadir where
nadir is the estimated nadir point of the candidate set and H = 4, 2 for m =
5, 10, respectively. For performance evaluation, the reference point is set to (1+
1/H)×trueNadir where trueNadir is the true nadir point of each test problem.

In the �rst stage of the proposed TGAHSS method, the �rst vector in the
vector set Λ1 is speci�ed as (1/

√
m, . . . , 1/

√
m). Other vectors in Λ1 are gen-

1 https://github.com/HisaoLabSUSTC/BenchSS
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Table 1. Size of each candidate solution set

Problem m = 5 m = 10

DTLZ1 29,194 30,194
DTLZ2 45,605 62,601

Minus-DTLZ1 35,798 76,701
Minus-DTLZ2 48,741 85,631

erated using the UNV method [30]. In the second stage, the vector set Λ2 is
generated using the UNV method as suggested in [29]. In the GAHSS method,
the vector set is also generated by the UNV method as in its original paper [18].
Each HSS method is executed 21 times independently.

All experiments are performed on a machine with AMD Ryzen Threadripper
3990X 64-Core Processor 2.90 GHz and Windows 10 Pro.

4.2 Performance of TGAHSS under Di�erent Parameter Settings

In the proposed TGAHSS, there are three parameters: the number of �rst-stage
vectors |Λ1|, the number of second-stage vectors |Λ2|, and the number of second-
stage solutions n2. We set the number of the second-stage vectors |Λ2| as |Λ2| =
100, which is the same setting as in GAHSS. In this subsection, we examine
the sensitivity of the performance of TGAHSS to the other two parameters.
For the number of �rst-stage vectors |Λ1|, we examine the settings of |Λ1| =
{1, 2, 10, 20, 30, 40, 50}. For the number of second-stage solutions n2, we examine
the settings of n2 = {1, 2, 5, 10, 20, 50, 100, 500}.

Fig. 2. Hypervolume of TGAHSS with di�erent parameter settings compared to
GAHSS and LGI-HSS.
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Table 2. Hypervolume of the subsets selected by TGAHSSUNV and TGAHSS. Λ1 in
TGAHSSUNV has a single vector generated by the UNV method.

Data Shape m TGAHSSUNV TGAHSS TGAHSS/TGAHSSUNV

DTLZ1
5 9.3800E-2 9.3888E-2 (+) 1.0009
10 5.6300E-2 5.6306E-2 (+) 1.0000

DTLZ2
5 2.6693E+0 2.7109E+0 (+) 1.0156
10 5.7368E+1 5.7431E+1 (+) 1.0011

Minus-DTLZ1
5 6.2018E+12 6.5753E+12 (+) 1.0602
10 1.4123E+26 1.6209E+26 (+) 1.1477

Minus-DTLZ2
5 2.9341E+2 3.0824E+2 (+) 1.0506
10 1.5589E+5 1.7201E+5 (+) 1.1034

(+/-/≈) (8/0/0)

Hypervolume of the selected subset Fig. 2 shows the average hypervolume
of the subsets selected by TGAHSS with di�erent parameter settings, which
are compared with the results selected by GAHSS (i.e., red lines) and LGI-HSS
(i.e., green lines). The horizontal axis of each �gure is the number of �rst-stage
vectors (i.e., |Λ1|). For each speci�cation of |Λ1|, experimental results obtained
by various speci�cations of the number of second-stage solutions (i.e., n2 =
{1, 2, 5, 10, 20, 50, 100, 500}) are shown as a group of bars.

As shown in Fig. 2, the hypervolume of the selected subset clearly increases
as the number of �rst-stage vectors increases (i.e., as |Λ1| increases). When |Λ1|
is small (e.g., the left-most group of bars for |Λ1| = 1), the hypervolume of the
subset selected by TGAHSS is signi�cantly improved by increasing the number of
solutions in the second stage (i.e., by increasing n2). In Fig. 2, the hypervolume of
the subset selected by TGAHSS is slightly worse than that selected by GAHSS
(i.e., red lines) when |Λ1| = 1 and n2 = 500 (i.e., the right-most bar in the
left-most bar group in each �gure).

In our experiments, the �rst vector of Λ1 is speci�ed as (1/
√
m, ..., 1/

√
m).

This is because much better results are obtained from this vector than the ran-
domly speci�ed �rst vector generated by the UNV method. In Table 2, TGAHSS
is compared with its variant TGAHSSUNV under the setting of |Λ1| = 1 and
n2 = 500 (i.e., the setting of the right-most bar in the left-most bar group in
each �gure in Fig. 2). TGAHSS uses the vector (1/

√
m, ..., 1/

√
m) as Λ1 and

TGAHSSUNV uses the UNV method to generate Λ1. It is clear in Table 2 that
TGAHSS outperforms TGAHSSUNV.

Computation time of TGAHSS As shown in Fig. 3, the computation time
of TGAHSS strongly depends on the number of �rst-stage vectors (i.e., |Λ1|).
When |Λ1| = 50 (i.e., the right-most bar group in each �gure in Fig. 3), the
computation time of TGAHSS is about 1/3 less than that of GAHSS. However,
when |Λ1| = 1 (i.e., the left-most bar group in each �gure in Fig. 3), TGAHSS
is about ten times faster than GAHSS. This is because the computation time
of TGAHSS in the �rst stage is much larger than that in the second stage
when the number of candidate solutions is very large. We need to approximate
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the hypervolume contribution of all candidate solutions (e.g., 85,631 solutions
for Minus-DTLZ1) in the �rst stage whereas we handle only a small number of
candidate solutions in the second stage (i.e., up to 500 solutions in Fig. 3). Thus,
the computation time of TGAHSS strongly depends on the number of �rst-stage
vectors (i.e., |Λ1|).

Fig. 3. Computation time of TGAHSS with di�erent parameter settings compared to
GAHSS and LGI-HSS.

It is also shown in Fig. 3 that the speci�cations of the number of the second-
stage solutions (i.e., di�erent bars in each bar group in each �gure of Fig. 3)
have no strong e�ect on the computation time of TGAHSS. This is because
the computation time of the �rst stage is much larger than that of the second
stage. In Fig. 2 and Fig. 3, we can observe that TGAHSS (with |Λ1| = 1 and
n2 = 500) can obtain a slightly worse subset using a much smaller computation
time compared to GAHSS. We use this setting in the next subsection.

4.3 Comparison with State-of-the-Art Methods

In this section, we compare the proposed method with the two most e�cient
greedy HSS methods: the greedy approximated HSS method (GAHSS [18]) and
the lazy greedy inclusion HSS method (LGI-HSS [17]). LGI-HSS is the most
e�cient greedy HSS method with exact hypervolume contribution calculation.
Since GAHSS uses the approximate calculation, GAHSS is faster than LGI-HSS
but its selected subset is worse than the subset selected by LGI-HSS.

Each algorithm is applied to each test problem 21 times. Average results
over 21 runs are summarized in Fig. 4. The random method (black point in
Fig. 4) where a subset is randomly selected from the candidate solution set is
also used as a baseline for comparison. In Fig. 4, the proposed TGAHSS method
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Fig. 4. Hypervolume and computation time of GAHSS, TGAHSS and LGI-HSS.

always locates around the knee region [31] of the trade-o� curve generated by
connecting the results obtained by the four methods. That is, TGAHSS is much
better than GAHSS and LGI-HSS with respect to the computation time and
slightly worse than GAHSS and LGI-HSS with respect to the subset quality
in Fig. 4. For example, for 5-objective DTLZ2, the hypervolume of the subset
selected by TGAHSS is slightly worse than that of GAHSS but TGAHSS is
about ten times faster than GAHSS.

5 Conclusion

In this paper, we proposed a two-stage greedy approximated hypervolume subset
selection method (TGAHSS) for large-scale candidate solution sets (e.g., 50,000
solutions). Experimental results showed that the proposed TGAHSS method is
much faster than the two state-of-the-art greedy HSS methods. The quality of
the subset selected by TGAHSS is slightly worse than those selected by GAHSS
and LGI-HSS in terms of the hypervolume. In the future, we will examine the
use of TGAHSS to generate an initial subset for local search HSS.
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