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Abstract—The multi-objective evolutionary algorithm based on 

decomposition (MOEA/D) with the penalty-based boundary 

intersection (PBI) function (denoted as MOEA/D-PBI) has been 

frequently used in many studies in the literature. One essential 

issue in MOEA/D-PBI is its penalty parameter value specification. 

However, it is not easy to specify the penalty parameter value 

appropriately. This is because MOEA/D-PBI shows different 

search behavior when the penalty parameter values are different. 

The PBI function with a small penalty parameter value is good for 

convergence. However, the PBI function with a large value of 

penalty parameter is needed to preserve the diversity and 

uniformity of solutions. Although some methods for adapting the 

penalty parameter value for each weight vector have been 

proposed, they usually lead to slow convergence. In this paper, we 

propose the idea of using two different values of penalty parameter 

simultaneously in MOEA/D-PBI. Although the idea is simple, the 

proposed algorithm is able to utilize both the convergence ability 

of a small penalty parameter value and the diversification ability 

of a large penalty parameter value of the PBI function. 

Experimental results demonstrate that the proposed algorithm 

works well on a wide range of test problems.  

 
Index Terms—Decomposition-based evolutionary algorithms, 

MOEA/D, multi-objective optimization, penalty parameter values, 

penalty-based boundary intersection.  

I. INTRODUCTION 

PTIMIZATION problems with multiple objective 

functions are frequently encountered in numerous real-

world applications [1]-[3], where the objective functions are 

typically conflicting with one another. This implies that 

tackling a multi-objective optimization problem will obtain a 

set of trade-off solutions. The trade-off solutions are often 

defined using the Pareto dominance relation, which are known 

as Pareto optimal solutions. When all Pareto optimal solutions 

are mapped to the objective space, a Pareto front is obtained. 

Many studies have shown that evolutionary multi-objective 

optimization (EMO) algorithms are effective tools for tackling 

multi-objective optimization problems [4]. Due to EMO 

algorithms’ population-based search nature, it is possible to 

obtain a set of non-dominated solutions in a single run, which 
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is then used to approximate the Pareto front. Thus, EMO 

algorithms are primarily designed to search for a good 

approximation of the Pareto front considering three criteria: 

convergence, spread, and uniformity. 

One of the most frequently-used EMO algorithms is the multi-

objective evolutionary algorithm based on decomposition 

(MOEA/D) [5]. MOEA/D decomposes a multi-objective 

optimization problem into several single-objective sub-problems 

by utilizing a set of weight vectors and a scalarizing function. 

Each sub-problem is optimized collaboratively together with its 

neighbors. The penalty-based boundary intersection (PBI) 

function is frequently used as a scalarizing function in MOEA/D 

for its ability to handle non-convex Pareto front [5] and its 

effectiveness in tackling many-objective problems [6].  

One key issue in MOEA/D with the PBI function (which is 

referred to as MOEA/D-PBI) is the specification of its penalty 

parameter θ. The penalty parameter θ is used by the PBI function 

for balancing the diversity and convergence of solutions [5]. 

However, it is not easy to specify an appropriate value of . A 

small value of 𝜃 is needed for strong convergence ability [7]-[8]. 

For example, it has been reported in [6] and [9] that MOEA/D-

PBI with a very small penalty parameter value (e.g., 𝜃 = 0.1) 

works well for knapsack problems with many objectives (e.g., 10 

objectives). Although a small value of θ is good for convergence, 

it leads to poor diversity of solutions on concave and linear Pareto 

fronts [7]. On the other hand, a large value of θ is needed for good 

uniformity of solutions. However, a large value of θ leads to poor 

convergence of solutions (e.g., for knapsack problems with many 

objectives) [6], [9]. Thus, a different penalty parameter value is 

needed for different types of problems [8].  

For further enhancement on the performance of MOEA/D-PBI, 

several approaches have been proposed [8], [10], [11]. The 

general idea of this line of research is to specify a different and 

appropriate value of θ for each weight vector (i.e., sub-problem). 

Depending on the Pareto front shape around the intersection point 

with the weight vector, an appropriately specified 𝜃 value can 

maximize the convergence ability and help to find a Pareto 

optimal solution on the weight vector. This strategy usually leads 

to a large value of 𝜃 for a weight vector close to each of the axis 
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in the objective space when the Pareto front is convex. Another 

important issue is the adaptation of weight vectors for irregular 

Pareto fronts [12]-[13]. A number of weight vector adaptation or 

adjustment mechanisms have been proposed [14]-[19]. However, 

in general, weight vector adaptation leads to slow convergence 

[20].  

In order to utilize both the strong convergence ability of the 

PBI function with a small value of penalty parameter and its 

strong diversification ability with a large value of penalty 

parameter, we propose an MOEA/D-PBI algorithm with two 

penalty parameter values (referred to as MOEA/D-2PBI) in this 

paper. The simultaneous use of two different penalty parameter 

values (one is a very small value and the other is a relatively large 

value) enables MOEA/D-2PBI to enhance the convergence as 

well as the uniformity of a solution set. Whereas the proposed 

algorithm is simple, it performs well on a set of test problems 

with varying characteristics. The main contributions of this paper 

are as follows:  

• We propose an idea of simultaneously using two penalty 

parameter values in MOEA/D with the PBI function to 

achieve strong convergence (by a small penalty 

parameter value) and strong diversification (by a large 

penalty parameter value).  

• We show that the proposed algorithm performs well on a 

wide range of test problems whereas it uses the fixed 

penalty parameter values and the fixed weight vectors.  

• We also show that the proposed algorithm outperforms 

more sophisticated algorithms with adaptive penalty 

parameter values and adaptive weight vectors on difficult 

test problems and a real-world problem.  

• We clearly explain why the proposed algorithm works 

well using the contour lines of the PBI function. 

The organization of this paper is as follows. Section II provides 

a brief overview of multi-objective optimization and the standard 

MOEA/D-PBI algorithm. Section III proposes MOEA/D-2PBI. 

Section IV reports experimental results for a set of test problems 

with different characteristics. Section V presents experimental 

results for the multi- and many-objective knapsack test problem, 

and a real-world application on the conceptual marine design 

problem. Finally, Section VI concludes this paper.  

II. BACKGROUND 

A. Multi-objective Optimization  

In general, optimization can be divided into maximization and 

minimization problems. In this paper, minimization problems are 

considered. We can transform maximization problems into 

minimization problems by multiplying -1 to the objective 

functions. Multi-objective optimization problems are generally 

formulated as follows:  

 Minimize f(x) = (𝑓1(𝒙), … , 𝑓𝑀(𝒙))
T subject to x ∈ 𝛀, (1) 

where x = (x1, x2, … , x𝐷)
T  is a solution (i.e., a vector with D 

decision variables), 𝛀 represents the feasible region of x , and 

𝑓𝑖(𝒙) is the i-th objective to be minimized (𝑖 =  1, 2, … ,𝑀).  

Given two solutions 𝒙𝒂  and 𝒙𝒃 , we say 𝒙𝒂  dominates 𝒙𝒃  if 

both of the following two conditions hold: 

(i). 𝑓𝑖(𝒙
𝒂)  ≤   𝑓𝑖(𝒙

𝒃),  ∀𝑖 ∈ {1, 2, … ,𝑀}, 

(ii). 𝑓𝑗(𝒙
𝒂)  <   𝑓𝑗(𝒙

𝒃),  ∃𝑗 ∈ {1, 2, … ,𝑀}. 

A solution 𝒙∗ ∈ 𝛀 is a Pareto optimal solution if and only if 

there exists no solution x in 𝛀 that dominates 𝒙∗. The Pareto set 

is a collection of all Pareto optimal solutions, and the Pareto front 

is formed when the Pareto set is projected onto the objective 

space.  

B. MOEA/D-PBI 

We briefly explain MOEA/D with the PBI function here. Let 

the population size of MOEA/D be denoted by N. In MOEA/D, 

the size of the population has the same number to the weight 

vectors and the number of sub-problems. MOEA/D uses a weight 

vectors set W = {𝒘1, … , 𝒘N} to decompose a multi-objective 

problem with 𝑀 objectives into N single-objective sub-problems. 

With the PBI function, each sub-problem with a weight vector 𝒘 

is defined in (2).  

 Minimize  𝒇 PBI (x|𝒘, 𝒛∗)= d1+ θd2, (2) 

where θ is a user-defined positive real number called the penalty 

parameter. The value of   is usually set as 5 in many studies in 

the literature. In (2), d1 and d2 are described as follows:  

 d1 = |(f(x) − 𝒛∗)
T
𝒘|∕‖𝒘‖, (3) 

 d2  = ‖ f(x) − 𝒛∗ − d1(𝒘∕‖𝒘‖)‖,  (4) 

where 𝒛∗ = (𝑧1
∗, … , 𝑧𝑀

∗ )  is the reference point. In 𝒛∗,  each 

element 𝑧𝑖
∗ is determined by calculating the minimum value of 

each objective value 𝑓𝑖(𝒙) over all the examined solutions.   

Fig. 1 illustrates the two distances d1  and d2  of the PBI 

function in the objective space (two-objective case is considered 

here). As we can see from Fig. 1, d1 is the distance from the 

projection of the objective vector f(x) on the weight vector w to 

the reference point 𝒛∗, and d2 is the distance perpendicular to the 

weight vector from f(x) . The penalty parameter θ  is used to 

balance the convergence (based on d1) and the diversity (based 

on d2) in the multi-objective search by MOEA/D.  

 
Fig. 1. Illustration of the PBI function.  

Figs. 2 and 3 show the contour lines (i.e., the dotted lines) of 

the PBI function with different penalty parameter values. When 

θ = 0 (Fig. 2), the contour lines are straight lines perpendicular 

to the weight vector. This type of contour lines helps to achieve 

fast convergence since the current solution has a large movable 

region. For example, Solution A on the weight vector in Fig. 2 

can move to any point in the shaded region (e.g., Solution B), 

which leads to fast convergence and poor uniformity of solutions.  

When θ = 5 (Fig. 3), the contour lines have a sharp angle. The 

larger the value of θ, the sharper the angle of the contour lines. 

Such a sharp angle leads to good uniformity of solutions and slow 
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convergence since the movable region is a narrow cone along the 

weight vector. For example, the movable region of Solution C in 

Fig. 3 is the shaded region, which is much smaller than that of 

Solution A in Fig. 2. Solution C can move to Solution D, but 

cannot move to Solution E. 

 

 

Fig. 2. Illustration of the PBI function with θ = 0 and its contour lines.  

 

Fig. 3. Illustration of the PBI function with θ = 5 and its contour lines. 

In this paper, we use the Das and Dennis method [21] to 

construct a set of uniformly distributed weight vectors W 

systematically. Each weight vector 𝒘𝒋= (𝑤1
 𝑗
, ⋯ , 𝑤𝑀

 𝑗
)T  must 

fulfill the following conditions:  

 ∑  i
 jM

i=1 = 1, (5) 

                 𝑤𝑖
 𝑗
∈ {0, 1/H, 2/H, … , H/H},  i = 1, 2, ..., M, (6) 

where H (i.e., an integer parameter) determines the number of 

weight vectors generated (i.e., the size of the population). 

The standard procedure of MOEA/D-PBI is described here. 

During the initialization stage, N  individuals are randomly 

created. Each individual is randomly assigned to a sub-problem. 

For each weight vector 𝒘𝒋, a neighborhood (with the Tn closest 

weight vectors including 𝒘𝒋 itself) is determined by calculating 

the Euclidean distance in the weight vector space. The size of the 

neighborhood Tn is a user definable parameter. Then, for each 

sub-problem  j ∈ {1, 2, … , N}, two parents xk  and xl are 

randomly chosen from the neighborhood. Genetic operators (i.e., 

crossover and mutation operators) are applied to the parent 

individuals to generate a child xc. The child xc is compared with 

each solution in its neighbourhood with the weight vector 

corresponding to the compared solution using the PBI function. 

The child xc replaces the current solution if it has a better PBI 

value than the current one. The process is repeated until the 

stopping condition is reached.   

III. THE PROPOSED ALGORITHM: MOEA/D-2PBI 

This section explains our proposed algorithm, i.e., the 

MOEA/D algorithm with two penalty parameter values 

(denoted as MOEA/D-2PBI). As we have discussed in Section 

II.B, different penalty parameter values generate different 

contour lines for the PBI function. The purpose of MOEA/D-

2PBI is to combine advantages of both small and large penalty 

parameter values. In general, the most important issue in the 

design of EMO algorithms is how to balance between 

convergence and diversity. As shown in some studies (e.g., 

[43]), a large 𝜃 value is needed to obtain well-distributed 

solutions. However, such a large 𝜃 value deteriorates the 

convergence ability especially for many-objective problems 

[6]. Our idea is to use both small and large  𝜃 values 

simultaneously. Two populations are evolved in a collaborative 

manner. One population with a small 𝜃  value helps the 

convergence of the other population with a large 𝜃 value. The 

use of multiple populations in an EMO algorithm has been 

shown to be both effective and practical in the literature [30], 

[41]. Our idea can be easily extended to more than two 

populations, which improves the performance of MOEA/D-

2PBI on some problems and deteriorates it on other problems 

as discussed in the supplementary file. Our idea of using small 

and large 𝜃  values is implemented as MOEA/D with two 

populations named MOEA/D-2PBI. Each population in 

MOEA/D-2PBI has the population size N. The value of the 

penalty parameter is specified as θ = 0 in one population and 

θ = 5 in the other population. It is expected that the strong 

convergence ability of PBI with θ = 0 will help to improve the 

convergence ability of PBI with θ = 5. 

The MOEA/D-2PBI algorithm is described as follows.  

Input:  A multi-objective optimization problem, a 

termination condition, a population size N, and a 

neighbourhood size Tn.    

Step 1: Randomly generate 2N solutions as initial 

solutions, and randomly assign them to the two 

populations, i.e., Population 1 and Population 2.  

Step 2:  Apply the standard MOEA/D procedure with PBI 

(θ = 0) to each of the N solutions in Population 1 

once. Population 2 with PBI (θ = 5) is updated by 

each generated solution in Population 1. 

Population 2 is handled as an archive where the 

entire population is used as the replacement 

neighbourhood for each solution generated in 

Population 1. The same reference point 𝒛∗ is used 

in the PBI function in the two populations. When a 

new solution is generated in each population, the 

reference point is always updated.  

Step 3:  Apply the standard MOEA/D procedure with PBI 

(θ = 5) to each of the N solutions in Population 2 

once. Population 1 with PBI (θ = 0) is updated by 

each generated solution in Population 2. 

Population 1 is handled as an archive where the 

entire population is used as the replacement 

neighbourhood for each solution generated in 

Population 2. The shared reference point 𝒛∗  is 

always updated.  

Step 4:  Iterate Step 2 and Step 3 until the termination 

condition is reached. The generation update 

consists of Step 2 and Step 3. The output is the 

better population between Population 1 and 
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Population 2, which is selected based on their 

hypervolume values (calculated using the 

estimated ideal and nadir points).  

The solution update mechanism of MOEA/D-2PBI is further 

explained here using a simple example, as presented in Figs. 4-6. 

Fig. 4 shows two populations of MOEA/D-2PBI with six weight 

vectors. Each population has six solutions, each of which is 

associated to one of the six weight vectors. The six red points, 

i.e., {𝑎1, 𝑎 , 𝑎3, 𝑎4, 𝑎5, 𝑎6}  are the current solutions in 

Population 1, in which 𝑎1, 𝑎 , 𝑎3, 𝑎4, 𝑎5, and 𝑎6 are associated 

to  𝒘𝟏, 𝒘𝟐, 𝒘𝟑, 𝒘𝟒, 𝒘𝟓, and 𝒘𝟔,  respectively. The six yellow 

points, i.e., {𝑏1, 𝑏 , 𝑏3, 𝑏4, 𝑏5, 𝑏6} are the current solutions in 

Population 2. The solutions  𝑏1, 𝑏 , 𝑏3, 𝑏4, 𝑏5, and 𝑏6 are 

associated to 𝒘𝟏, 𝒘𝟐, 𝒘𝟑, 𝒘𝟒, 𝒘𝟓, and 𝒘𝟔, respectively.  

Let us assume that in Population 1, an offspring solution (i.e., 

the green point) is produced for the weight vector 𝒘𝟑. We also 

assume that the neighborhood size is three (i.e., the neighborhood 

of 𝒘𝟑  is {𝒘𝟐, 𝒘𝟑, 𝒘𝟒} ). The offspring solution of  𝒘𝟑  in 

Population 1 is compared with its neighboring solutions using the 

PBI function with θ = 0. The same offspring solution is also 

compared with all solutions in Population 2 using the PBI 

function with θ = 5.  

 
Fig. 4. Illustration of two populations in MOEA/D-2PBI. Each population is 

associated to the six weight vectors.   

The solution update mechanism in Population 1 is illustrated 

in Fig. 5. The offspring solution is compared with the 

neighborhood solutions of 𝒘𝟑  (i.e., 𝑎 , 𝑎3 and 𝑎4)  using the 

PBI function with θ = 0. For a better illustration, a contour line 

for the PBI function with θ = 0 (i.e., the black dotted line) is also 

included for each current solution in the neighborhood of  𝒘𝟑. 

Since the offspring solution has a better PBI function value than 

𝑎3 and 𝑎4, the offspring solution will replace them.  

 

Fig. 5. Illustration of the solution update mechanism for Population 1. 

Then, all the solutions in Population 2 are compared with the 

same offspring solution using the PBI function with θ = 5. In Fig. 

6, the contour line for the PBI function with θ = 5  is also 

included for each current solution of Population 2. Since the 

offspring solution has a better PBI function value than the 

current solution 𝑏3 of the weight vector 𝒘𝟑, it will replace 𝑏3 in 

Fig. 6. Since there are two different populations involved in 

MOEA/D-2PBI, it is worth mentioning that the total number of 

generations of each population in MOEA/D-2PBI is half that of 

population in the standard MOEA/D-PBI. 

 

Fig. 6. Illustration of the solution update mechanism for Population 2. 

Here, we further discuss the reason for comparing a newly 

generated solution in one population with not only the 

neighboring solutions in that population but also all solutions in 

the other population. Let us consider a test problem with a convex 

inverted Pareto front (e.g., Minus-DTLZ2 [27]). First, we discuss 

the handling of a convex Pareto front by the PBI function. In Fig. 

7, the relation between the weight vectors and the obtained 

solutions by the PBI function with   = 5 and   = 0 is shown in 

(a) and (b) for a convex Pareto front of a two-objective problem. 

Solution 1 and Solution 2 are the best solutions for 𝒘𝟏 = (1, 0) 

and 𝒘𝟐 = (0, 1), respectively. As depicted in Fig. 7 (a), the two 

extreme points of the Pareto front cannot be obtained by the PBI 

function with  = 5. In order to obtain solutions near to the two 

extreme points, it is needed to use a larger value of 𝜃 (e.g., 𝜃 =
10), which further weakens the convergence ability. However, 

they can be obtained by the PBI function with  = 0 in Fig. 7 (b). 

      
                         (a)  = 5.                                             (b)  = 0. 

Fig. 7. Relation between the weight vector and the best solution by the PBI 

function. Solution 1 and Solution 2 are the best solutions for 𝒘𝟏 = (1, 0) and 

𝒘𝟐  = (0, 1), respectively. The red curve shows the Pareto front of the 

normalized bi-objective Minus-DTLZ2 problem. 

It is noteworthy that, in Fig. 7 (b), Solution 1 for 𝒘𝟏 = (1, 0) 

is obtained at (0,1) and Solution 2 for 𝒘𝟐 = (0, 1) is obtained at 

(1, 0). That is, the best solution for each weight vector is not 

obtained around the corresponding weight vector. This is the 

reason for comparing a newly generated solution in one 
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population with all solutions in the other population in 

MOEA/D-2PBI (e.g., all solutions in Population 2 with  = 5 

are compared with a newly generated solution in Population 1 

with  = 0). For example, let us assume that Solution 2 in Fig. 

7 (b) on the 𝑓1(𝑥)-axis is generated for  𝒘𝟏  = (1, 0) in the 

population with  = 5 in Fig. 7(a). This solution cannot survive 

in Fig. 7(a) with  = 5. However, it can survive in Fig. 7(b) with 

 = 0 as the solution for 𝒘𝟐 = (0, 1).  

Since two populations are obtained in MOEA/D-2PBI, the 

population with a better hypervolume value will be selected as 

the output of MOEA/D-2PBI. The hypervolume value is 

calculated based on the estimated ideal and nadir points. The 

estimated ideal point is the same as the reference point 𝒛∗in the 

final population. The estimated nadir point will be obtained 

from the non-dominated solutions among all the solutions in the 

two final populations. In this paper, the exact hypervolume 

calculation (i.e., the fast WFG algorithm [22]) is used since 

computational experiments are performed on test problems with 

three to eight objectives. For problems with ten objectives or 

more (i.e., 𝑀 ≥10), we can use an approximate hypervolume 

calculation method (e.g., [23]). Alternatively, the IGD+ 

indicator [24] can be used since the hypervolume indicator and 

the IGD+ indicator have similar characteristic feature [25]. In 

IGD+, all the non-dominated solutions from the two final 

populations will serve as reference points for distance 

calculation.  

IV. EXPERIMENTS 

A. Comparison Between the MOEA/D-PBI and MOEA/D-

2PBI Algorithms   

As an initial step to evaluate the performance of MOEA/D-

2PBI, it is first compared with the standard MOEA/D-PBI. The 

frequently-used DTLZ1-4 test problems [26] and their minus 

version (i.e., the Minus-DTLZ1-4 test problems) [27] are used in 

this section. The number of objectives is specified as M ∈
{3, 4, 6, 8}.  A total of 32 test instances are used. As in [26], the 

number of decision variables (i.e., D) is specified as M + k − 1 

for DTLZ and Minus-DTLZ, where k equals 5 for DTLZ1 and 

Minus-DTLZ1, and k  is set as 10 for DTLZ2-4 and Minus-

DTLZ2-4. Table I shows the population size used in our 

experiments for each setting of the number of objectives.  

TABLE I.  

POPULATION SIZE FOR EACH SETTING OF THE OBJECTIVE NUMBER.  

M Population size (N) 

3 91 

4 120 

6 126 

8 156 

All experiments are conducted on the PlatEMO platform [28], 

with the following experimental settings:  

Neighborhood size Tn: 10% of the population size,  

Crossover operator: Simulated binary crossover (SBX),  

Mutation operator: Polynomial mutation,  

Crossover probability: 1, 

Mutation probability: 1/D, 

Distribution indexes for crossover and mutation: 20,   

Stopping conditions: 300 generations for three- and four-

objective test problems (i.e., 27,300 and 36,000 solution 

evaluations for M = 3 and 4, respectively), 400 generations for 

six- and eight-objective test problems (i.e., 50,400 and 62,400 

solution evaluations for M = 6 and 8, respectively).  

In order to provide a fair comparison, it is important to note 

that the total number of generations of each population in 

MOEA/D-2PBI is half that of population in the standard 

MOEA/D-PBI. For example, when the termination condition is 

set as 300 generations for three- and four-objective test problems, 

each population in MOEA/D-2PBI is actually evolved for 150 

generations only, whereas the population in the standard 

MOEA/D-PBI is evolved for 300 generations.  

Each MOEA/D algorithm is performed on each test problem 31 

times independently. The performance evaluation of each 

algorithm is based on the hypervolume indicator. For the 

calculation of the hypervolume value, the objective space is 

normalized using the true ideal and nadir points of each test 

problem first. In this manner, the ideal point is (0, 0, ..., 0) and 

the nadir point is (1, 1, ..., 1). Then, a reference point is set as 

r = (1.1, 1.1, …, 1.1)  in the normalized objective space. An 

algorithm with a higher hypervolume value has better 

performance. 

Table II presents the average hypervolume values by each 

standard MOEA/D algorithm (with different values of 𝜃) and 

each population of MOEA/D-2PBI on a set of DTLZ and Minus-

DTLZ test instances with three, four, six and eight objectives. 

Since MOEA/D-PBI with 𝜃 = 5 is frequently used in many 

studies for performance comparison (e.g., see [15], [29]-[30]), 

the statistical significance of differences in the obtained 

experimental results between MOEA/D-PBI (with 𝜃 =5) and 

each of the other algorithms are examined. In this paper, the 

Wilcoxon’s rank sum test at the 5% level of significant is used. 

We use the symbols “+”, “ − ”, and “=” to show whether the 

compared algorithm has better, worse, or equivalent performance 

to the original MOEA/D-PBI (with 𝜃 =5) statistically. The bold 

typeface and the gray shading are used to highlight the best result 

of each test instance.  

In Table II, we can observe that in the standard MOEA/D-PBI 

algorithm, a different value of the penalty parameter (i.e., 𝜃) is 

needed for a different test problem (thus, two different penalty 

parameter values are used in our proposed algorithm). In 

MOEA/D-2PBI, better results are obtained from Population 2 

with 𝜃 = 5  on many test problems. However, on some test 

problems, better results are obtained from Population 1 with 𝜃 = 

0 (thus, a better population is selected as the final output of the 

proposed algorithm). It can also be observed that on many test 

problems, the results by the proposed MOEA/D-2PBI algorithm 

are better than or similar to the results of MOEA/D-PBI with the 

best setting of the penalty parameter value. 

Fig. 8 shows the solution sets obtained for the three-objective 

DTLZ2 problem by the standard MOEA/D-PBI with 𝜃 = 5 and 

the proposed MOEA/D-2PBI. A single run is selected based on 

the median hypervolume value of 31 runs. Even though the 

standard MOEA/D-PBI with 𝜃 = 5  has statistically better 

performance than MOEA/D-2PBI on DTLZ2, their average 

hypervolume values are very similar. From Fig. 8(a) and (b), it 

can be also clearly observed that their obtained solution 

distributions are very similar. However, when the setting of the 
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penalty parameter value is not appropriate, clearly worse results 

are obtained by MOEA/D-PBI than MOEA/D-2PBI.  

 

 
(a) Median HV = 0.7446                         (b) Median HV = 0.7437 

Fig. 8. The solution sets obtained for the three-objective DTLZ2 problem by (a) 

MOEA/D-PBI with θ = 5, and (b) MOEA/D-2PBI (Population 2), respectively. 
The true Pareto front is represented by the blue surface, and the solutions are 

shown by the black points.  

Fig. 9 shows the solution sets obtained for the three-objective 

Minus-DTLZ2 problem by the standard MOEA/D-PBI with 𝜃 =
5  and the proposed MOEA/D-2PBI. For Minus-DTLZ2, the 

output of the proposed MOEA/D-2PBI is Population 1 because it 

has a better hypervolume value than Population 2. As shown in 

Fig. 9 (a), the standard MOEA/D-PBI with  𝜃 = 5 cannot obtain 

a well-distributed solutions set over the entire Pareto front. As for 

MOEA/D-2PBI, the obtained solutions can evenly cover the 

entire Pareto front (as shown in Fig. 9 (b)).  

 

(a) Median HV = 0.6955                          (b) Median HV = 0.7064  

Fig. 9. The solution sets obtained for the three-objective Minus-DTLZ2 by (a) 

MOEA/D-PBI with θ = 5, and (b) MOEA/D-2PBI (Population 1), respectively. 

The true Pareto front is represented by the blue surface, and the solutions are 

shown by the black points.  

The experimental results in Table II also indicate that the 

convergence ability of MOEA/D-2PBI is significantly enhanced 

by the use of the two penalty parameter values simultaneously. 

As an example, the improvement of the convergence ability can 

be demonstrated by the performance of MOEA/D-2PBI 

(Population 2) on the DTLZ3 test problem. The DTLZ3 test 

problem is designed to test the convergence ability of an EMO 

algorithm to the Pareto optimal front. The search space of DTLZ3 

contains a huge number of local Pareto optimal fronts, which 

hinders an EMO algorithm from approaching the global Pareto 

optimal front [26]. Comparing to the standard MOEA/D-PBI, 

MOEA/D-2PBI has significantly better performance on the 

DTLZ3 test problem with three, four, six, and eight objectives.  

 
TABLE II.  

THE AVERAGE HYPERVOLUME VALUE OF EACH MOEA/D ALGORITHM ON EACH TEST PROBLEM WITH THREE TO EIGHT OBJECTIVES.  

Test Instance M 
Standard MOEA/D-PBI  MOEA/D-2PBI 

θ = 0 θ = 1 θ = 2 θ = 5 θ = 10 Population 1 Population 2 

 3 4.7151E-1 - 1.0790E+0 - 1.1148E+0 = 1.1141E+0 1.1132E+0 = 4.6554E-1 - 1.1169E+0 + 

DTLZ1 4 6.9107E-1 - 1.2848E+0 - 1.3720E+0 = 1.3728E+0 1.3715E+0 = 6.2715E-1 - 1.3741E+0 + 
 6 1.1373E+0 - 1.6501E+0 - 1.7356E+0 - 1.7497E+0 1.7497E+0 = 1.0443E+0 - 1.7497E+0 = 
 8 1.4242E+0 - 2.0668E+0 - 1.8787E+0 - 2.1254E+0 2.1339E+0 + 1.4080E+0 - 2.1135E+0 - 

 3 3.3100E-1 - 6.9290E-1 - 7.4469E-1 + 7.4459E-1 7.4447E-1 - 3.3100E-1 - 7.4372E-1 - 

DTLZ2 4 4.6410E-1 - 7.2653E-1 - 1.0320E+0 + 1.0316E+0 1.0313E+0 - 4.6410E-1 - 1.0295E+0 - 
 6 6.7140E-1 - 6.5737E-1 - 1.5135E+0 + 1.5133E+0 1.5132E+0 - 6.7156E-1 - 1.5117E+0 - 
 8 6.7931E-1 - 6.6879E-1 - 1.9810E+0 + 1.9798E+0 1.9792E+0 - 6.7923E-1 - 1.9781E+0 - 

 3 2.4715E-1 = 1.7426E-1 = 3.8367E-1 + 2.3000E-1 7.7518E-2 - 1.5339E-1 = 4.4850E-1 + 

DTLZ3 4 4.1992E-1 = 3.6783E-1 = 5.4973E-1 = 4.2029E-1 2.9275E-2 - 3.1276E-1 = 7.8548E-1 + 
 6 6.3466E-1 + 3.2483E-1 = 5.1720E-1 = 5.2659E-1 4.7388E-1 = 6.3673E-1 + 1.4626E+0 + 
 8 6.6528E-1 = 2.8787E-1 - 5.7426E-1 - 1.1855E+0 9.0301E-1 = 6.5017E-1 = 1.9015E+0 + 

 3 1.8713E-1 - 4.2941E-1 - 4.9106E-1 = 4.6286E-1 5.7331E-1 + 2.7552E-1 - 5.7853E-1 + 

DTLZ4 4 2.2500E-1 - 5.2912E-1 - 6.9226E-1 = 7.5243E-1 7.6992E-1 = 3.6152E-1 - 7.8068E-1 = 
 6 3.8190E-1 - 5.8848E-1 - 1.2369E+0 = 1.2341E+0 1.2813E+0 = 5.7718E-1 - 1.2257E+0 = 
 8 4.7348E-1 - 6.4324E-1 - 1.6279E+0 - 1.6990E+0 1.7101E+0 = 7.4308E-1 - 1.7647E+0 = 

Minus-DTLZ1 

3 3.7844E-2 - 2.6143E-1 + 2.6097E-1 + 2.5550E-1 2.4427E-1 - 4.1981E-2 - 2.4983E-1 - 

4 5.9078E-3 - 7.4119E-2 + 7.0758E-2 + 6.8419E-2 6.7352E-2 - 5.2130E-3 - 6.6495E-2 - 

6 1.0504E-4 - 1.6840E-3 + 1.2941E-3 = 1.4151E-3 1.7110E-3 + 9.3530E-5 - 1.9345E-3 + 

8 1.7045E-6 - 3.8094E-5 + 6.3213E-6 = 7.0605E-6 7.4230E-6 = 1.0443E-6 - 4.7327E-5 + 

Minus-DTLZ2 

3 7.0649E-1 + 5.5322E-1 - 6.8523E-1 - 6.9510E-1 6.7595E-1 - 7.0640E-1 + 6.9377E-1 - 

4 3.6563E-1 + 2.9279E-1 - 3.9609E-1 + 3.5122E-1 3.2180E-1 - 3.6562E-1 + 3.5043E-1 = 

6 1.6121E-2 - 6.7512E-2 + 6.2400E-2 + 5.5207E-2 4.9061E-2 - 1.6323E-2 - 5.4959E-2 = 

8 1.5433E-3 - 1.1177E-2 + 5.3340E-3 - 6.0249E-3 5.3084E-3 - 1.5016E-3 - 6.2322E-3 + 

Minus-DTLZ3 

3 7.0134E-1 + 5.3947E-1 - 6.7025E-1 + 6.6454E-1 6.2983E-1 - 6.9499E-1 + 6.7947E-1 + 

4 3.6233E-1 + 2.8255E-1 - 3.8400E-1 + 3.3804E-1 2.9498E-1 - 3.5158E-1 + 3.2840E-1 - 

6 1.6587E-2 - 6.6009E-2 + 6.1944E-2 + 5.4997E-2 4.7741E-2 - 1.8561E-2 - 5.1572E-2 - 

8 1.4120E-3 - 1.0854E-2 + 5.1923E-3 - 5.9607E-3 5.1100E-3 - 1.1491E-3 - 5.8831E-3 = 

Minus-DTLZ4 

3 6.4739E-1 + 4.4428E-1 - 5.5225E-1 = 4.5764E-1 5.4394E-1 = 6.8672E-1 + 6.7367E-1 + 

4 3.3684E-1 + 1.3596E-1 - 2.6737E-1 = 2.6449E-1 2.5670E-1 - 2.9844E-1 + 2.8443E-1 = 

6 1.5409E-2 - 2.2011E-2 - 2.4377E-2 = 2.3047E-2 2.9814E-2 = 1.2848E-2 - 3.7243E-2 + 

8 1.3851E-3 = 9.1026E-4 = 7.6514E-4 - 1.2436E-3 9.5115E-4 - 1.0906E-3 = 4.2891E-3 + 

+/− ∕=  7/21/4 8/20/4 12/8/12  3/18/11 7/21/4 14/10/8 
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          (a) Median HV = 0.0000                              (b) Median HV = 0.5166 

Fig. 10. The solution sets obtained for the three-objective DTLZ3 by (a) 

MOEA/D-PBI with θ = 5, and (b) MOEA/D-2PBI (Population 2), respectively. 
The true Pareto front is represented by the blue surface, and the solutions are 

shown by the black points.  

Fig. 10 shows the solution sets obtained for the three-objective 

DTLZ3 problem by MOEA/D-2PBI and MOEA/D-PBI 

(with  𝜃 = 5 ), respectively. We can see that the solution set 

obtained by MOEA/D-2PBI on the three-objective DTLZ3 

problem is much closer to the true Pareto front. It is worth noting 

that the total number of generations of each population in 

MOEA/D-2PBI is half of the total number of generations in the 

standard MOEA/D-PBI. That is, the solution set obtained by 

MOEA/D-2PBI is evolved for 150 generations, whereas the 

solution set obtained by MOEA/D-PBI is evolved for 300 

generations.  The obtained solution sets clearly demonstrate that 

MOEA/D-2PBI with two penalty parameter values can achieve 

faster convergence than the standard MOEA/D-PBI with a single 

penalty parameter value. In summary, the experimental results 

suggest the usefulness of using two penalty parameter values 

simultaneously in improving the search ability of MOEA/D with 

the PBI function. 

B. Comparison Between MOEA/D-2PBI with Other EMO 

Algorithms  

The proposed MOEA/D-2PBI algorithm is compared with 

other EMO algorithms in this section. NSGA-III [31], RVEA 

[29], MOEA/D-AWA [14], AdaW [17], MOEA/D-APS [8], 

Two_Arch2 [38], 𝜃 -DEA [39], and R2HCA-EMOA [40] are 

used for comparison. These compared algorithms are selected 

based on the following considerations. NSGA-III is one of the 

most widely used decomposition-based EMO algorithms in the 

EMO community. RVEA, MOEA/D-AWA, and AdaW are 

decomposition-based EMO algorithms that adopt certain 

strategies to adaptively adjust the weight vectors (or reference 

vectors) along the evolutionary process. MOEA/D-APS uses an 

adaptive penalty scheme (APS) to linearly adjust the value of 𝜃 

at different evolution stages. Two_Arch2 and 𝜃-DEA are also 

used in our study for performance comparison since they have 

been shown to be effective in solving many-objective problems. 

R2HCA-EMOA is a recently proposed hypervolume-based 

algorithm. We use R2HCA-EMOA in our experiments since its 

performance has been shown to be competitive to other 

hypervolume-based algorithms [40]. Experimental settings are 

the same as those used in Section IV.A on the PlatEMO platform. 

On Pages 2 and 3 in the supplementary file, the nine algorithms 

are also compared under the following two settings of the 

population size: (i) N in the proposed algorithm and 2N in all the 

other algorithms, and (ii) 2N in all algorithms. 

Table III shows the computational results of each EMO 

algorithm on the DTLZ1-4 and Minus-DTLZ1-4 problems. 31 

runs are independently performed for each test problem. The 

symbols “+”, “  − ”, and “=” are used to show whether the 

compared algorithm has better, worse, or equivalent 

performance to the proposed MOEA/D-2PBI statistically. The 

bold typeface is used to highlight the best result of each test 

instance. On average, MOEA/D-2PBI performs well on most of 

the examined test instances. On 22 out of 32 test instances, 

MOEA/D-2PBI ranks in the top five among the nine 

algorithms. The experimental results indicate that, although 

MOEA/D-2PBI is not always the best, it does not show very 

poor performance on any of the test problems. MOEA/D-2PBI 

is particularly good at handling difficult-to-converge problems, 

as evidenced by its results on the DTLZ1 and DTLZ3 problems.  

The convergence curves of different algorithms on the six-

objective and eight-objective DTLZ3 problems are presented in 

Figs. 11 and 12, respectively. These figures demonstrate that 

MOEA/D-2PBI converges towards the Pareto fronts faster than 

the other compared algorithms.  In addition, we can also see that 

MOEA/D-2PBI obtains good performance on many six- and 

eight-objective test instances. The experimental results clearly 

indicate that the use of a small penalty parameter value and a 

large penalty parameter value together can effectively enhance 

the searchability of MOEA/D in many-objective optimization. 

 
Fig. 11. The convergence curve for six-objective DTLZ3.                         

 
Fig. 12. The convergence curve for eight-objective DTLZ3. 
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TABLE III.  

THE AVERAGE HYPERVOLUME VALUE OF EACH ALGORITHM ON THE DTLZ AND MINUS-DTLZ TEST PROBLEMS. 

Test 

Instance 
M 

MOEA/D-

2PBI 
NSGA-III RVEA 

MOEA/D-

AWA 
AdaW 

MOEA/D-

APS 
Two_Arch2 𝜃-DEA 

R2HCA-

EMOA 
 3 1.117E+0 1.115E+0 - 1.115E+0 - 1.109E+0 - 1.116E+0 - 1.112E+0 - 1.067E+0 - 1.117E+0 = 1.118E+0 + 

DTLZ1 4 1.374E+0 1.372E+0 - 1.374E+0 = 1.357E+0 - 1.371E+0 - 1.372E+0 - 1.362E+0 - 1.374E+0 = 1.375E+0 + 
 6 1.750E+0 1.713E+0 - 1.750E+0 + 1.737E+0 - 1.745E+0 - 1.749E+0 - 1.736E+0 - 1.740E+0 - 1.751E+0 + 
 8 2.114E+0 2.079E+0 - 2.138E+0 + 2.112E+0 = 2.004E+0 - 2.127E+0 + 2.107E+0 - 2.134E+0 + 2.138E+0 + 
 3 7.437E-1 7.446E-1 + 7.444E-1 + 7.464E-1 + 7.441E-1 = 7.446E-1 + 7.417E-1 - 7.446E-1 + 7.527E-1 + 

DTLZ2 4 1.030E+0 1.031E+0 + 1.032E+0 + 1.034E+0 + 1.027E+0 - 1.032E+0 + 9.961E-1 - 1.032E+0 + 1.046E+0 + 
 6 1.512E+0 1.512E+0 + 1.513E+0 + 1.506E+0 - 1.485E+0 - 1.513E+0 + 1.343E+0 - 1.513E+0 + 1.534E+0 + 
 8 1.978E+0 1.963E+0 - 1.980E+0 + 1.941E+0 - 1.947E+0 - 1.980E+0 + 1.613E+0 - 1.980E+0 + 2.006E+0 + 
 3 4.485E-1 3.143E-1 = 7.318E-2 - 3.628E-1 = 3.046E-1 = 3.218E-1 = 1.020E-1 - 4.042E-1 = 5.501E-1 + 

DTLZ3 4 7.855E-1 2.413E-1 - 1.584E-1 - 8.498E-1 = 6.258E-1 - 3.954E-1 - 2.151E-1 - 5.934E-1 = 9.303E-1 + 
 6 1.463E+0 2.638E-1 - 9.161E-1 - 1.256E+0 - 1.192E+0 - 6.040E-1 - 8.055E-1 - 9.357E-1 - 1.517E+0 + 
 8 1.901E+0 3.001E-1 - 1.521E+0 - 1.670E+0 - 1.610E+0 - 9.583E-1 - 7.335E-1 - 1.046E+0 - 1.997E+0 + 
 3 5.785E-1 6.670E-1 + 7.349E-1 + 7.184E-1 + 7.360E-1 + 4.538E-1 - 7.419E-1 + 6.842E-1 + 5.402E-1 = 

DTLZ4 4 7.807E-1 9.581E-1 + 1.032E+0 + 9.739E-1 + 9.929E-1 + 6.628E-1 = 9.909E-1 + 9.995E-1 + 9.881E-1 + 
 6 1.226E+0 1.482E+0 + 1.510E+0 + 1.347E+0 + 1.485E+0 + 1.239E+0 = 1.280E+0 = 1.513E+0 + 1.482E+0 + 
 8 1.765E+0 1.950E+0 + 1.979E+0 + 1.864E+0 + 1.959E+0 + 1.659E+0 = 1.588E+0 - 1.981E+0 + 1.980E+0 + 

Minus-

DTLZ1 

3 2.498E-1 2.719E-1 + 2.440E-1 - 2.721E-1 + 2.919E-1 + 2.564E-1 + 2.913E-1 + 2.509E-1 = 2.950E-1 + 

4 6.650E-2 5.255E-2 - 3.085E-2 - 5.810E-2 - 8.390E-2 + 6.931E-2 + 8.324E-2 + 5.043E-2 - 8.638E-2 + 

6 1.934E-3 1.350E-3 - 2.884E-4 - 1.706E-3 - 2.737E-3 + 1.270E-3 - 3.002E-3 + 6.097E-4 - 3.106E-3 + 

8 4.733E-5 5.212E-5 + 3.519E-6 - 1.490E-5 - 4.963E-5 + 5.558E-6 - 5.870E-5 + 4.760E-5 = 6.712E-5 + 

Minus-

DTLZ2 

3 7.064E-1 6.924E-1 - 6.705E-1 - 6.950E-1 - 7.136E-1 + 6.885E-1 - 7.117E-1 + 6.879E-1 - 7.097E-1 + 

4 3.656E-1 3.390E-1 - 2.877E-1 - 3.020E-1 - 4.023E-1 + 3.307E-1 - 4.056E-1 + 3.574E-1 - 4.211E-1 + 

6 5.496E-2 2.437E-2 - 2.725E-3 - 3.612E-2 - 5.416E-2 = 5.106E-2 - 6.985E-2 + 1.617E-2 - 9.026E-2 + 

8 6.232E-3 5.211E-3 - 2.858E-3 - 2.970E-3 - 3.758E-3 - 5.528E-3 - 7.777E-3 + 4.878E-3 - 1.336E-2 + 

Minus-
DTLZ3 

3 6.950E-1 6.730E-1 - 6.468E-1 - 6.844E-1 - 6.964E-1 = 6.601E-1 - 7.096E-1 + 6.727E-1 - 7.081E-1 + 

4 3.516E-1 3.070E-1 - 2.662E-1 - 3.031E-1 - 3.780E-1 + 3.134E-1 - 3.922E-1 + 3.415E-1 - 4.198E-1 + 

6 5.157E-2 2.140E-2 - 3.146E-3 - 3.600E-2 - 5.096E-2 = 5.101E-2 = 6.213E-2 + 1.903E-2 - 8.979E-2 + 

8 5.883E-3 3.678E-3 - 2.812E-3 - 2.699E-3 - 3.431E-3 - 5.477E-3 - 5.924E-3 = 4.835E-3 - 1.329E-2 + 

Minus-

DTLZ4 

3 6.867E-1 6.926E-1 + 6.508E-1 - 6.975E-1 + 7.128E-1 + 5.326E-1 - 7.115E-1 + 6.940E-1 + 7.176E-1 + 

4 2.984E-1 3.292E-1 + 2.704E-1 - 2.987E-1 + 3.985E-1 + 1.880E-1 - 4.041E-1 + 3.515E-1 + 4.268E-1 + 

6 3.697E-2 1.376E-2 - 3.670E-3 - 2.338E-2 = 5.033E-2 = 1.827E-2 - 6.934E-2 + 1.135E-2 - 8.980E-2 + 

8 4.279E-3 4.250E-3 = 1.085E-3 - 2.079E-3 - 2.714E-3 = 1.294E-3 - 7.604E-3 + 4.793E-3 = 1.268E-2 + 

+/−/=    11/19/2 10/21/1 9/19/4 13/12/7 7/20/5 17/13/2 11/14/7 31/0/1 

In Table III, R2HCA-EMOA shows the best performance 

among all the compared algorithms on many test instances. 

Since R2HCA-EMOA is a hypervolume-based algorithm that 

has been designed to maximize the hypervolume of the current 

population, it is reasonable to expect that R2HCA-EMOA 

obtains the best performance in terms of hypervolume. It is also 

observed that MOEA/D-2PBI has lower performance than 

AdaW and Two_Arch2 on many Minus-DTLZ test instances. 

Since Minus-DTLZ test instances have inverted triangular 

Pareto fronts, decomposition-based algorithms with the 

predefined weight vectors usually perform poorly on these test 

instances. This is the reason why MOEA/D-2PBI with the 

predefined weight vectors is outperformed by AdaW with a 

weight vector adaptation mechanism and Two_Arch2 with a 

search mechanism based on no weight vectors. However, as 

shown later, MOEA/D-2PBI outperforms these two algorithms 

on difficult-to-converge test problems and a real-world 

problem. 

Next, we further examine the performance of MOEA/D-

2PBI using a newly proposed many-objective test problem, i.e., 

HTNY19 [32]-[33]. The formulation of HTNY19 is described 

as follows:  

Minimize f
i
(x) = max {0, xi − 𝛽∑ xj

M
j=1

j≠i

}, i = 1, 2, ..., M, (7) 

subject to 0 ≤ xi ≤ 100,   i=1, 2, ..., M,  (8) 

where  

f
i
(x) = 10000,  i=1, 2, ..., M,   if  ∑ f

i
(x) < 1𝑀

𝑖=1 . (9) 

According to [32], the value of 𝛽 is set as 0.1 for HTNY19. 

The number of decision variables D equals the number of 

objectives M. Whereas the HTNY19 problem is defined by a 

simple formulation, it is a difficult many-objective test problem 

for most EMO algorithms, as demonstrated in [32]. Especially, 

a strong convergence ability is necessary in order to obtain good 

solutions on the Pareto front.  

Table IV presents the average hypervolume value of each 

algorithm on the HTNY19 problem with a stopping condition 

of 5000 generations (2500 generations for each population of 

MOEA/D-2PBI: 455,000, 600,000, 630,000, and 780,000 

solution evaluations for three-objective, four-objective, six-

objective and eight-objective problems, respectively). Each 

algorithm is performed 31 times independently on each test 

instance. We use the symbols “+”, “  − ”, and “=” to show 

whether the compared algorithm has better, worse, or 

equivalent performance to the MOEA/D-2PBI statistically. It is 

observed in Table IV that the search performance of NSGA-III, 

MOEA/D-AWA and AdaW is deteriorated by increasing the 

objective number from six to eight. Especially, the performance 

of MOEA/D-AWA and AdaW is severely degraded (e.g., the 

average hypervolume values obtained by MOEA/D-AWA and 

AdaW are zero and 0.2055 for the eight-objective problem, 

respectively). MOEA/D-2PBI, RVEA, MOEA/D-APS, θ-DEA, 

and R2HCA-EMOA obtain similar performance on the 
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HTNY19 problem with three to eight objectives. That is, almost 

the same average hypervolume values are obtained from these 

algorithms (e.g., see the results on the eight-objective HTNY19 

problem in Table IV).  

TABLE IV. 
THE AVERAGE HYPERVOLUME VALUE OF EACH ALGORITHM ON THE HTNY19 PROBLEM. THE NUMBER OF DECISION VARIABLES IS THE SAME AS THE NUMBER OF 

OBJECTIVES. 

Test Instance M 

MOEA/D-
2PBI 

(𝜃 = 5 and 

𝜃 = 0)  

MOEA/D-

PBI 

(𝜃 = 0) 

MOEA/D-

PBI 

(𝜃 = 5)  

NSGA-III RVEA 
MOEA/D-

AWA 
AdaW 

MOEA/D-

APS 
Two_Arch2 𝜃-DEA 

R2HCA-

EMOA 

HTNY19 

3 1.1106 0.3310 - 1.1138 + 1.1183 + 1.1164 + 1.0490 - 1.1134 + 1.1190 + 1.0917 - 1.1194 + 1.1197 + 

4 1.3728 0.4641 - 1.3752 + 1.3759 + 1.3745 + 1.2650 - 1.3724 = 1.3763 + 1.3396 - 1.3763 + 1.3768 + 

6 1.7505 0.7457 - 1.7507 + 1.7510 + 1.7505 + 1.6397 - 1.7369 - 1.7510 + 1.6223 - 1.7510 + 1.7490 = 

 8 2.1384 1.5725 - 1.9997 - 1.5862 = 2.1375 - 0.0000 - 0.2055 - 2.1383 = 1.9790 - 2.1385 + 2.1337 - 

+/−/=   0/4/0 3/1/0 3/0/1 3/1/0 0/4/0 1/2/1 3/0/1 0/4/0 4/0/0 2/1/1 

 

TABLE V. 

THE AVERAGE HYPERVOLUME VALUE OF EACH ALGORITHM ON THE EIGHT-OBJECTIVE HTNY19 PROBLEM WITH DIFFERENT NUMBER OF DECISION VARIABLES. 

Test Instance D 

MOEA/D-

2PBI 

(𝜃 = 5 and 

𝜃 = 0) 

MOEA/D-

PBI 

(𝜃 = 0) 

MOEA/D-

PBI 

(𝜃 = 5) 
NSGA-III RVEA 

MOEA/D-
AWA 

AdaW 
MOEA/D-

APS 
Two_Arch2 𝜃-DEA 

R2HCA-
EMOA 

HTNY19 

(M=8) 

8 2.1384 1.5725 - 1.9997 - 1.5862 = 2.1375 - 0.0000 - 0.2055 - 2.1383 = 1.9790 - 2.1385 + 2.1337 - 

40 2.1372 1.8906 - 0.0000 - 0.0120 - 2.1353 - 0.0000 - 0.0000 - 2.1359 - 2.0499 - 1.8862 = 2.1375 + 

80 2.1364 1.9597 - 0.0000 - 0.0000 - 2.1231 - 0.0000 - 0.0000 - 2.1332 - 2.0547 - 1.1812 - 2.1383 + 

120 2.1356 1.9580 - 0.0000 - 0.0000 - 2.0199 - 0.0000 - 0.0000 - 2.1327 - 2.0657 - 0.0256 - 2.0693 - 

+/−/=   0/4/0 0/4/0 0/3/1 0/4/0 0/4/0 0/4/0 0/3/1 0/4/0 1/2/1 2/2/0 

 

  
Fig. 13. The true Pareto front of the eight-objective HTNY19 and the obtained solution sets for the eight-objective HTNY19 problem with 120 decision variables 

by different algorithms. 

 We can increase the number of decision variables for 

HTNY19 problem from M  to 𝑀𝑝  by splitting each original 

decision variables in (7)-(8) into 𝑝 variables [34], as follows:  

𝑥𝑖 = 𝑦𝑖1 + 𝑦𝑖 +. . . +𝑦𝑖𝑝 , 𝑖 = 1, 2, … ,𝑀, (10) 

0 ≤ 𝑦𝑖ℎ ≤ 100 𝑝⁄ , 𝑖 = 1, 2, … ,𝑀, where ℎ = 1, 2, … , 𝑝. (11) 

For the eight-objective HTNY19 problem, we increase the 

decision variables number from 8 to 40, 80, and 120 (i.e., 𝑝 =
5, 10,  and 15). The results are presented in Table V. The 

difficulty of the HTNY19 problem is increased by increasing 

the number of decision variables, as evident from the 

performance degradation of the other EMO algorithms in Table 
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V. MOEA/D-2PBI shows robust performance even for the case 

of 120 decision variables. Fig. 13 presents the solution sets 

obtained for the eight-objective HTNY19 problem with 120 

decision variables by different algorithms. It is clearly observed 

that a set of well converged and diversified solutions is obtained 

by MOEA/D-2PBI. Even though MOEA/D-PBI with θ = 0 can 

converge to the Pareto front, it cannot obtain a set of well-

diversified solutions. RVEA, MOEA/D-APS, Two_Arch2, and 

R2HCA-EMOA show slightly inferior performance to 

MOEA/D-2PBI on the eight-objective HTNY19 problem with 

120 decision variables. From the vertical axis of each figure in 

Fig. 13, it can be seen that NSGA-III, MOEA/D-AWA, AdaW 

and θ-DEA need much stronger convergence ability for the 

eight-objective HTNY19 problem with 120 decision variables.  

As we have explained in Section II, MOEA/D-PBI with θ = 

0 has strong convergence ability, and MOEA/D-PBI with θ = 

5 has strong diversification ability. Our idea is to utilize the 

strength of each specification simultaneously in a single 

algorithm. The strong convergence ability of MOEA/D-PBI 

with θ = 0 is demonstrated in Fig. 13 and Table V on the eight-

objective HTNY19 problem where good results are not 

obtained by MOEA/D-PBI with θ =5 when the number of 

decision variables are 40, 80 and 120. The strong diversification 

ability of MOEA/D-PBI with θ =5 is demonstrated in Table IV 

on the test problems with three to eight objectives where good 

results are not obtained by MOEA/D-PBI with θ =  0. By 

utilizing the strength of each specification simultaneously, good 

results are obtained on all test instances in Table IV and Table 

V by MOEA/D-2PBI. This explains the high search ability of 

our proposed MOEA/D-2PBI algorithm with the use of θ = 0 

and θ = 5 simultaneously. 

V. PERFORMANCE ON MANY-OBJECTIVE KNAPSACK 

PROBLEMS AND A REAL-WORLD PROBLEM 

In this section, we further examine the performance of our 

proposed MOEA/D-2PBI algorithm on the two-, four-, six-, and 

eight-objective knapsack problems with 500 items. 

Specifically, we use the two-objective 500-item knapsack 

problem in [35] and the 500-item knapsack problems with four, 

six, and eight objectives in [6]. The detailed formulations of 

these test problems are also available in the supplementary file. 

In this paper, the two-objective 500-item problem, four-

objective 500-item problem, six-objective 500-item problem, 

and the eight-objective 500-item problem are referred to as 2-

500, 4-500, 6-500 and 8-500 problems, respectively. In 

accordance with the specifications in [6], the population size is 

set as 100 for the 2-500 problem, 120 for the 4-500 problem, 

126 for the 6-500 problem, and 120 for the 8-500 problem. For 

the coding implementation, a binary string of length 500 is 

used. The termination condition is set as 400,000 solution 

evaluations. As the genetic operators, the uniform crossover 

and the bit-flip mutation are used. The probability for crossover 

is set as 1 and the probability for mutation is set as 1/500.  

Table VI presents the average hypervolume values of the 

eleven algorithms on the 2-500, 4-500, 6-500, and 8-500 

problems. The symbols “+”, “ − ”, and “=” are used to show 

whether the compared algorithm has better, worse, or 

equivalent performance to the MOEA/D-2PBI statistically. In 

Table VI, MOEA/D-PBI with θ  = 0 obtains the best 

performance on 2-500, 4-500, 6-500, and 8-500 problems. 

Although MOEA/D-2PBI do not show the best performance, it 

has similar performance to MOEA/D-PBI with θ = 0 (i.e., it 

obtains the second-best performance on the many-objective 

knapsack problems). Fig. 14 displays the solutions obtained by 

the eleven algorithms on 2-500 problem. The black dotted line 

is the true Pareto front (which is provided by the authors of [35]) 

and the blue points are the solutions obtained by each algorithm. 

Whereas the solution set obtained by MOEA/D-PBI with θ = 0 

has larger spread, it has smaller number of solutions than the 

other solution sets. In contrast, the solution set obtained by 

MOEA/D-PBI with θ  = 5 has more solutions but smaller 

spread. It can also be seen that NSGA-III, RVEA, AdaW, 

MOEA/D-APS, Two_Arch2, θ-DEA, and R2HCA-EMOA 

have similar performance to MOEA/D-PBI with θ  = 5 with 

respect to their spread of solution set. For the proposed 

MOEA/D-2PBI, the obtained solution set has the advantage of 

each specification: large spread (by θ = 0) and many solutions 

(by θ = 5).  

 

TABLE VI. 

THE AVERAGE HYPERVOLUME VALUE OF EACH ALGORITHM ON THE MANY-OBJECTIVE KNAPSACK TEST PROBLEMS. THE BEST VALUE IS HIGHLIGHTED BY BOLD 

AND SHADED IN GRAY. THE SECOND-BEST RESULT IS ITALICIZED.  

Test 
Instance 

M 

MOEA/D-
2PBI 

(𝜃 = 5 and 

𝜃 = 0) 

MOEA/D-
PBI 

(𝜃 = 0) 

MOEA/D-
PBI 

(𝜃 = 5) 
NSGA-III RVEA 

MOEA/D-
AWA 

AdaW 
MOEA/D-

APS 
Two_Arch2 𝜃-DEA 

R2HCA-
EMOA 

2-500 2 3.84E+8 
3.88E+8  

+ 
3.69E+8  

- 
3.71E+8 

 - 
3.74E+8  

- 
3.78E+8  

- 
3.73E+8  

- 
3.69E+8  

- 
3.70E+8  

- 
3.72E+8  

- 
3.69E+8  

- 

4-500 4 1.01E+17 
1.09E+17  

+ 
9.07E+16  

- 
8.42E+16  

- 
8.97E+16  

- 
1.04E+17 

+ 
9.38E+16 

- 
9.11E+16  

- 
9.11E+16  

- 
8.25E+16 

- 
9.23E+16 

- 

6-500 6 2.07E+25 
2.23E+25  

+ 
1.66E+25  

- 
1.62E+25  

- 
1.71E+25 

 - 
1.69E+25 

- 
1.78E+25 

- 
1.66E+25  

- 
1.80E+25  

- 
1.64E+25 

- 
1.76E+25 

- 

8-500 8 4.51E+33 
4.98E+33  

+ 
3.40E+33  

- 
3.44E+33  

- 
3.54E+33  

- 
3.47E+33 

- 
3.70E+33 

- 
3.43E+33  

- 
3.93E+33 

 - 
3.49E+33 

- 
3.79E+33 

- 

+/−/=   4/0/0 0/4/0 0/4/0 0/4/0 1/3/0 0/4/0 0/4/0 0/4/0 0/4/0 0/4/0 
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Fig. 14. The obtained solution sets for the two-objective knapsack problem with 500 decision variables by different algorithms. The blue points are the obtained 
solutions by each algorithm, and the black dotted line is the true Pareto front.  

 

Next, the usefulness of the proposed MOEA/D-2PBI 

algorithm is further demonstrated on a four-objective 

conceptual marine design problem [36], [37]. In the conceptual 

marine design problem, the objectives are (1) to minimize the 

cost of transportation, (2) to minimize the weight of the light 

ship, and (3) to maximize the annual cargo transport capacity. 

In addition, the involved constraints are reformulated as the 

fourth objective to minimize the sum of constraint violations. 

Since these four objectives have totally different ranges, a 

simple normalization mechanism in [42] is used in MOEA/D-

2PBI:  

𝑧𝑖 ≔
𝑧𝑖−𝑧𝑖

∗

𝑧𝑖
𝑁−𝑧𝑖

∗+𝜖
,                                      (12) 

where 𝑧𝑖
∗and 𝑧𝑖

𝑁 are the estimated ideal and nadir points. The 

normalization parameter 𝜖  is set to 10−6  to prevent the 

denominator from being zero. For fair comparison, the same 

normalization mechanism as (12) is used in MOEA/D-APS. 

With respect to the other algorithms, their original 

implementations are used. This is because each algorithm has 

its own mechanism to handle objectives with different scales. 

The population size N is specified as 120 for all algorithms. We 

consider the conceptual marine design problem as an expensive 

real-world problem where only 1,200 solutions can be 

evaluated in the execution of each algorithm, which is 

equivalent to 10 generations.  

Table VII shows our experimental results. In Table VII, 

MOEA/D-2PBI has the best performance, followed by 

MOEA/D-AWA, AdaW, and R2HCA-EMOA. Fig. 15 shows 

the solution sets obtained by these four algorithms. Compared 

to AdaW and R2HCA-EMOA, the solution set by MOEA/D-

2PBI has a larger spread. In comparison with MOEA/D-AWA, 

the solution set by MOEA/D-2PBI has a better convergence. 

These results demonstrate the usefulness of MOEA/D-2PBI in 

solving real-world problems with a limited computational 

budget.  
 

TABLE VII. 

THE AVERAGE HYPERVOLUME VALUE OF EACH ALGORITHM ON THE FOUR-OBJECTIVE CONCEPTUAL MARINE DESIGN PROBLEM. THE BEST VALUE IS HIGHLIGHTED 

BY BOLD.  

M MOEA/D-2PBI NSGA-III RVEA MOEA/D-AWA AdaW MOEA/D-APS Two_Arch2 𝜃-DEA R2HCA-EMOA 

4 0.7146 0.6202 - 0.6205 - 0.7046 = 0.6870 - 0.3386 - 0.6019 - 0.6220 - 0.6835 = 

 

         

Fig. 15. The obtained solution sets for the four-objective conceptual marine design problem by MOEA/D-2PBI, MOEA/D-AWA, AdaW, and R2HCA-EMOA. 
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VI. CONCLUSIONS 

In order to simultaneously utilize the advantages of small and 

large penalty parameter values of the PBI function in MOEA/D, 

we proposed MOEA/D-2PBI in this paper. Two penalty 

parameter values (i.e.,  θ = 0  and θ = 5 ) were used 

simultaneously in MOEA/D-2PBI. The basic idea was to 

simultaneously utilize high convergence ability of a small 

penalty parameter value and high diversification ability of a 

large penalty parameter value. This idea was implemented as 

the proposed MOEA/D-2PBI algorithm by using two 

populations which are evolved in a collaborative manner. The 

original MOEA/D-PBI and the proposed MOEA/D-2PBI were 

applied to a wide range of test problems with regular and 

irregular Pareto fronts. Our experimental results showed that a 

different penalty parameter value is needed for a different test 

problem. MOEA/D-2PBI outperformed the original MOEA/D-

PBI (i.e., with a single penalty parameter value) on many test 

problems. MOEA/D-2PBI was also compared with eight state-

of-the-art EMO algorithms for many-objective optimization 

and good results were obtained. The strong convergence ability 

of the proposed algorithm was also demonstrated by 

computational experiments on a difficult many-objective test 

problem (i.e., HTNY19) and many-objective knapsack 

problems. Furthermore, the proposed algorithm was shown to 

perform well on a real-world conceptual marine design problem 

with a limited computational budget.      

We also explained why the PBI function with θ = 0 can find 

the extreme solutions of convex Pareto fronts, which cannot be 

obtained by the PBI function with θ = 5 (i.e., by the standard 

setting of the PBI function). That is, it was clearly demonstrated 

that the PBI function with θ = 0 can help the standard 

MOEA/D algorithm (i.e., MOEA/D-PBI with θ =  5) to 

increase both the convergence ability and the diversification 

ability by finding the extreme solutions of convex Pareto fronts.  

Our current implementation of MOEA/D-2PBI chooses one 

of the two populations as the final output. Alternatively, the 

final output can be selected from the merged population using 

a subset selection method. This is an interesting and promising 

future research topic where different subset selection methods 

will be examined. In the supplementary file, some preliminary 

results (Tables S4-S5 and Figs. S2-S3) are given. It is also 

worthwhile to investigate how continuous values of θ can be 

used in the proposed algorithm.   
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1. Search Behavior of MOEA/D-PBI with Different θ Values 
 

Fig. S1 shows the search behavior of MOEA/D-PBI with different penalty values (𝜃 ∈ [0, 10]) on DTLZ2, DTLZ3, Minus-

DTLZ2, and Minus-DTLZ3 (with three, four, six, and eight objectives). Based on Fig. S1, it can be seen that different 𝜃 values 

have different performance for different types of problems. In particular, for DTLZ2, any value of 𝜃 larger than 1 performs well 

independent of the number of objectives. For DTLZ3, it is difficult to determine which value of 𝜃 is appropriate since different 𝜃 

values are needed for different number of objectives. For Minus-DTLZ2 and Minus-DTLZ3, it seems that a small value of 𝜃 

(which is smaller than 1) is a better choice independent of the number of objectives. However, its best specification depends on 

the number of objectives. 

 

 

   

    

    

    

Fig. S1: The performance of the standard MOEA/D-PBI with a single population using a wide variety of 𝜃 values in the interval of [0, 10] on DTLZ2, DTLZ3, 

Minus-DTLZ2, and Minus-DTLZ3.  
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2. Effect of Population Size: N vs 2N  
 

In this section, an experiment that tests some other algorithms with a double population size was conducted. In the experiment, 

the population size for the proposed MOEA/D-2PBI is specified as N. The population size for the other algorithms is specified as 

2N. However, since the Das and Dennis method is used to generate uniformly distributed weight vectors for decomposition-

based EMO algorithms (i.e., NSGA-III, RVEA, MOEA/D-AWA, AdaW, MOEA/D-APS, and 𝜃-DEA), their population size 

cannot be exactly set as 2N in some cases. In this case, their population size is specified as a settable integer closest to 2N. In 

Table S1, the actual specifications of the population size for each algorithm are listed. 

 
TABLE S1.  

THE POPULATION SIZE FOR EACH ALGORITHM.  

M N MOEA/D-2PBI 
NSGA-III, RVEA, MOEA/D-AWA, 

AdaW, MOEA/D-APS, 𝜃-DEA 
Two_Arch2, R2HCA-EMOA 

3 91 91  171  182  

4 120 120  220 240  

6 126 126  252 252 

8 156 156  330 330 

 

Following the parameter specification in Section IV.A of the paper, the termination condition is specified as 27300, 36000, 

50400, and 62400 solution evaluations, for M = 3, 4, 6, and 8, respectively. For each algorithm, 31 independent runs are 

performed. It should also be noted that whereas the proposed MOEA/D-2PBI uses two populations, its final output is selected 

from one of the two populations with N solutions. For the other compared algorithms, the final output is a population with 2N 

solutions. The experimental results are shown in the following Table S2.  

 
TABLE S2.  

THE AVERAGE HYPERVOLUME VALUE OF EACH ALGORITHM ON A GIVEN TEST PROBLEM. THE POPULATION SIZE FOR MOEA/D-2PBI IS SPECIFIED AS N, AND THE 

POPULATION SIZE FOR OTHER ALGORITHMS IS SPECIFIED AS 2N.  

Test 

Instance 
M N 

MOEA/D-

2PBI 
NSGA-III RVEA 

MOEA/D-

AWA 
AdaW 

MOEA/D-

APS 
Two_Arch2 𝜃-DEA 

R2HCA- 

EMOA 
 3 91 1.117E+0 1.122E+0 + 9.623E-1 - 1.123E+0 + 1.124E+0 + 1.121E+0 + 9.917E-1 - 1.125E+0 + 1.131E+0 + 

DTLZ1 4 120 1.374E+0 1.377E+0 + 1.279E+0 - 1.357E+0 - 1.380E+0 + 1.382E+0 + 1.362E+0 - 1.382E+0 + 1.388E+0 + 
 6 126 1.750E+0 1.748E+0 = 1.732E+0 - 1.718E+0 - 1.742E+0 = 1.754E+0 + 1.747E+0 - 1.702E+0 = 1.758E+0 + 
 8 156 2.114E+0 1.947E+0 = 2.131E+0 + 2.109E+0 = 1.975E+0 = 2.129E+0 + 2.117E+0 + 2.116E+0 + 2.141E+0 + 
 3 91 7.437E-1 7.608E-1 + 7.584E-1 + 7.637E-1 + 7.619E-1 + 7.611E-1 + 7.618E-1 + 7.612E-1 + 7.691E-1 + 

DTLZ2 4 120 1.030E+0 1.054E+0 + 1.053E+0 + 1.055E+0 + 1.054E+0 + 1.056E+0 + 1.036E+0 + 1.055E+0 + 1.072E+0 + 
 6 126 1.512E+0 1.540E+0 + 1.547E+0 + 1.531E+0 + 1.531E+0 + 1.549E+0 + 1.415E+0 - 1.547E+0 + 1.569E+0 + 
 8 156 1.978E+0 1.994E+0 + 2.023E+0 + 1.957E+0 = 1.950E+0 - 2.024E+0 + 1.766E+0 - 2.022E+0 + 2.041E+0 + 
 3 91 4.485E-1 2.469E-2 - 0.000E+0 - 4.061E-1 = 3.885E-1 = 2.084E-1 - 4.417E-2 - 3.700E-2 - 1.898E-1 - 

DTLZ3 4 120 7.855E-1 1.378E-2 - 0.000E+0 - 8.331E-1 + 7.983E-1 = 3.631E-1 - 1.064E-1 - 9.150E-2 - 2.842E-1 - 
 6 126 1.463E+0 4.556E-3 - 1.510E-1 - 1.135E+0 - 1.144E+0 - 5.758E-1 - 4.660E-3 - 3.459E-1 - 1.111E+0 - 
 8 156 1.901E+0 0.000E+0 - 7.187E-2 - 1.671E+0 - 1.494E+0 - 1.029E+0 = 4.325E-3 - 7.113E-2 - 1.996E+0 + 
 3 91 5.785E-1 7.218E-1 + 7.587E-1 + 6.952E-1 + 7.624E-1 + 5.061E-1 = 7.615E-1 + 6.999E-1 + 7.102E-1 + 

DTLZ4 4 120 7.807E-1 1.046E+0 + 1.054E+0 + 9.848E-1 + 1.036E+0 + 7.524E-1 = 1.031E+0 + 1.047E+0 + 1.065E+0 + 
 6 126 1.226E+0 1.533E+0 + 1.549E+0 + 1.437E+0 + 1.534E+0 + 1.152E+0 = 1.379E+0 + 1.548E+0 + 1.566E+0 + 
 8 156 1.765E+0 2.012E+0 + 2.026E+0 + 1.943E+0 + 2.012E+0 + 1.665E+0 = 1.733E+0 - 2.025E+0 + 2.040E+0 + 

Minus-

DTLZ1 

3 91 2.498E-1 2.903E-1 + 2.274E-1 - 2.930E-1 + 3.017E-1 + 2.686E-1 + 3.066E-1 + 2.825E-1 + 3.106E-1 + 

4 120 6.650E-2 7.044E-2 + 3.894E-2 - 6.358E-2 - 8.955E-2 + 7.229E-2 + 9.160E-2 + 4.054E-2 - 9.756E-2 + 

6 126 1.934E-3 1.559E-3 - 7.613E-5 - 2.283E-3 + 3.629E-3 + 1.236E-3 - 3.534E-3 + 5.884E-5 - 4.164E-3 + 

8 156 4.733E-5 6.857E-5 + 3.959E-6 - 2.006E-5 - 8.406E-5 + 8.618E-6 - 7.698E-5 + 5.969E-5 + 1.116E-4 + 

Minus-

DTLZ2 

3 91 7.064E-1 7.164E-1 + 6.963E-1 - 7.193E-1 + 7.361E-1 + 7.151E-1 + 7.354E-1 + 7.158E-1 + 7.343E-1 + 

4 120 3.656E-1 3.758E-1 + 3.459E-1 - 3.526E-1 - 4.357E-1 + 3.815E-1 + 4.377E-1 + 3.938E-1 + 4.515E-1 + 

6 126 5.496E-2 3.887E-2 - 3.538E-2 - 3.954E-2 - 7.411E-2 + 7.091E-2 + 8.397E-2 + 1.182E-2 - 1.039E-1 + 

8 156 6.232E-3 3.731E-3 - 1.885E-3 - 4.742E-3 - 6.815E-3 + 8.162E-3 + 1.034E-2 + 6.646E-3 + 1.654E-2 + 

Minus-
DTLZ3 

3 91 6.950E-1 6.718E-1 - 6.446E-1 - 7.068E-1 + 7.009E-1 = 6.748E-1 - 7.223E-1 + 6.865E-1 - 7.294E-1 + 

4 120 3.516E-1 3.274E-1 - 3.276E-1 - 3.422E-1 - 3.884E-1 + 3.532E-1 = 3.986E-1 + 3.736E-1 + 4.460E-1 + 

6 126 5.157E-2 2.865E-2 - 3.762E-2 - 3.860E-2 - 6.233E-2 + 6.706E-2 + 6.751E-2 + 1.645E-2 - 1.030E-1 + 

8 156 5.883E-3 2.948E-3 - 2.278E-3 - 4.061E-3 - 5.312E-3 - 8.167E-3 + 6.955E-3 + 7.361E-3 + 1.646E-2 + 

Minus-

DTLZ4 

3 91 6.867E-1 7.184E-1 + 6.987E-1 + 7.218E-1 + 7.357E-1 + 4.732E-1 = 7.354E-1 + 7.203E-1 + 7.389E-1 + 

4 120 2.984E-1 3.672E-1 + 3.445E-1 + 3.529E-1 + 4.328E-1 + 2.718E-1 - 4.378E-1 + 3.890E-1 + 4.553E-1 + 

6 126 3.697E-2 2.626E-2 = 1.421E-2 - 3.226E-2 = 6.856E-2 + 1.895E-2 = 8.369E-2 + 2.212E-3 - 1.040E-1 + 

8 156 4.279E-3 2.031E-3 - 7.052E-4 - 4.072E-3 = 5.039E-3 = 1.194E-3 - 9.954E-3 + 5.785E-3 = 1.603E-2 + 

+/−/=     17/12/3 11/21/0 15/12/5 22/4/6 16/8/8 22/10/0 20/10/2 29/3/0 

 

 

In Table S2, we can see that the performance of the other compared algorithms (except for RVEA) with 2N population size on 

the 32 test instances are generally better than the proposed MOEA/D-2PBI. However, this table does not necessarily mean that 
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MOEA/D-2PBI performs worse than the other compared algorithms. This is because N solutions obtained by MOEA/D-2PBI are 

compared with 2N solutions obtained by each of the other algorithms. Since most performance indicators such as the 

hypervolume and IGD depend on the solution set size (i.e., in general, a larger solution set has a better indicator value), we need 

to compare different algorithms under the same solution set size. 

In Table S3, we further compare the performance of MOEA/D-2PBI with 2N population size with other algorithms. This is to 

ensure that the hypervolume value is calculated based on the solution sets of the same size (i.e., 2N in this case) for a fair 

performance comparison. It can be observed that performance comparison results in Table S3 is similar to the reported results 

(i.e., Table III on Page 7) in our paper. That is, MOEA/D-2PBI outperforms NSGA-III, RVEA, MOEA/D-AWA, MOEA/D-APS 

and 𝜃 -DEA, and is outperformed by AdaW, Two_Arch2 and R2HCA-EMOA. As shown by other experimental results, 

MOEA/D-2PBI outperforms these three better algorithms (i.e., AdaW, Two_Arch2 and R2HCA-EMOA) on more difficult test 

problems. 
 

TABLE S3. 

THE AVERAGE HYPERVOLUME VALUE OF EACH ALGORITHM ON A GIVEN TEST PROBLEM. THE POPULATION SIZE FOR MOEA/D-2PBI AND THE COMPARED 

ALGORITHMS IS SPECIFIED AS 2N.   

Test 

Instance 
M N 

MOEA/D-

2PBI 
NSGA-III RVEA 

MOEA/D-

AWA 
AdaW 

MOEA/D-

APS 
Two_Arch2 𝜃-DEA 

R2HCA- 

EMOA 
 3 91 1.125E+0 1.122E+0 = 9.623E-1 - 1.123E+0 = 1.124E+0 = 1.121E+0 = 9.917E-1 - 1.125E+0 = 1.131E+0 + 

DTLZ1 4 120 1.384E+0 1.377E+0 - 1.279E+0 - 1.357E+0 - 1.380E+0 - 1.382E+0 - 1.362E+0 - 1.382E+0 - 1.388E+0 + 
 6 126 1.755E+0 1.748E+0 - 1.732E+0 - 1.718E+0 - 1.742E+0 - 1.754E+0 - 1.747E+0 - 1.702E+0 - 1.758E+0 + 
 8 156 2.129E+0 1.947E+0 = 2.131E+0 = 2.109E+0 - 1.975E+0 - 2.129E+0 = 2.117E+0 = 2.116E+0 - 2.141E+0 + 
 3 91 7.582E-1 7.608E-1 + 7.584E-1 = 7.637E-1 + 7.619E-1 + 7.611E-1 + 7.618E-1 + 7.612E-1 + 7.691E-1 + 

DTLZ2 4 120 1.051E+0 1.054E+0 + 1.053E+0 + 1.055E+0 + 1.054E+0 + 1.056E+0 + 1.036E+0 - 1.055E+0 + 1.072E+0 + 
 6 126 1.543E+0 1.540E+0 - 1.547E+0 + 1.531E+0 - 1.531E+0 - 1.549E+0 + 1.415E+0 - 1.547E+0 + 1.569E+0 + 
 8 156 2.017E+0 1.994E+0 - 2.023E+0 + 1.957E+0 - 1.950E+0 - 2.024E+0 + 1.766E+0 - 2.022E+0 + 2.041E+0 + 
 3 91 3.417E-1 2.469E-2 - 0.000E+0 - 4.061E-1 = 3.885E-1 = 2.084E-1 = 4.417E-2 - 3.700E-2 - 1.898E-1 - 

DTLZ3 4 120 6.637E-1 1.378E-2 - 0.000E+0 - 8.331E-1 = 7.983E-1 = 3.631E-1 - 1.064E-1 - 9.150E-2 - 2.842E-1 - 
 6 126 1.435E+0 4.556E-3 - 1.510E-1 - 1.135E+0 - 1.144E+0 - 5.758E-1 - 4.660E-3 - 3.459E-1 - 1.111E+0 - 
 8 156 1.938E+0 0.000E+0 - 7.187E-2 - 1.671E+0 - 1.494E+0 - 1.029E+0 - 4.325E-3 - 7.113E-2 - 1.996E+0 + 
 3 91 5.859E-1 7.218E-1 + 7.587E-1 + 6.952E-1 + 7.624E-1 + 5.061E-1 = 7.615E-1 + 6.999E-1 + 7.102E-1 + 

DTLZ4 4 120 7.921E-1 1.046E+0 + 1.054E+0 + 9.848E-1 + 1.036E+0 + 7.524E-1 = 1.031E+0 + 1.047E+0 + 1.065E+0 + 
 6 126 1.360E+0 1.533E+0 + 1.549E+0 + 1.437E+0 + 1.534E+0 + 1.152E+0 - 1.379E+0 + 1.548E+0 + 1.566E+0 + 
 8 156 1.799E+0 2.012E+0 + 2.026E+0 + 1.943E+0 + 2.012E+0 + 1.665E+0 - 1.733E+0 = 2.025E+0 + 2.040E+0 + 

Minus-

DTLZ1 

3 91 2.656E-1 2.903E-1 + 2.274E-1 - 2.930E-1 + 3.017E-1 + 2.686E-1 = 3.066E-1 + 2.825E-1 + 3.106E-1 + 

4 120 7.151E-2 7.044E-2 = 3.894E-2 - 6.358E-2 - 8.955E-2 + 7.229E-2 + 9.160E-2 + 4.054E-2 - 9.756E-2 + 

6 126 2.049E-3 1.559E-3 - 7.613E-5 - 2.283E-3 + 3.629E-3 + 1.236E-3 - 3.534E-3 + 5.884E-5 - 4.164E-3 + 

8 156 6.987E-5 6.857E-5 = 3.959E-6 - 2.006E-5 - 8.406E-5 + 8.618E-6 - 7.698E-5 + 5.969E-5 - 1.116E-4 + 

Minus-

DTLZ2 

3 91 7.327E-1 7.164E-1 - 6.963E-1 - 7.193E-1 - 7.361E-1 + 7.151E-1 - 7.354E-1 + 7.158E-1 - 7.343E-1 + 

4 120 4.133E-1 3.758E-1 - 3.459E-1 - 3.526E-1 - 4.357E-1 + 3.815E-1 - 4.377E-1 + 3.938E-1 - 4.515E-1 + 

6 126 6.807E-2 3.887E-2 - 3.538E-2 - 3.954E-2 - 7.411E-2 + 7.091E-2 + 8.397E-2 + 1.182E-2 - 1.039E-1 + 

8 156 8.027E-3 3.731E-3 - 1.885E-3 - 4.742E-3 - 6.815E-3 - 8.162E-3 + 1.034E-2 + 6.646E-3 - 1.654E-2 + 

Minus-
DTLZ3 

3 91 7.196E-1 6.718E-1 - 6.446E-1 - 7.068E-1 - 7.009E-1 - 6.748E-1 - 7.223E-1 = 6.865E-1 - 7.294E-1 + 

4 120 3.956E-1 3.274E-1 - 3.276E-1 - 3.422E-1 - 3.884E-1 - 3.532E-1 - 3.986E-1 = 3.736E-1 - 4.460E-1 + 

6 126 6.054E-2 2.865E-2 - 3.762E-2 - 3.860E-2 - 6.233E-2 + 6.706E-2 + 6.751E-2 + 1.645E-2 - 1.030E-1 + 

8 156 7.146E-3 2.948E-3 - 2.278E-3 - 4.061E-3 - 5.312E-3 - 8.167E-3 + 6.955E-3 - 7.361E-3 = 1.646E-2 + 

Minus-

DTLZ4 

3 91 7.121E-1 7.184E-1 + 6.987E-1 - 7.218E-1 + 7.357E-1 + 4.732E-1 - 7.354E-1 + 7.203E-1 + 7.389E-1 + 

4 120 3.771E-1 3.672E-1 - 3.445E-1 - 3.529E-1 - 4.328E-1 + 2.718E-1 - 4.378E-1 + 3.890E-1 + 4.553E-1 + 

6 126 5.831E-2 2.626E-2 - 1.421E-2 - 3.226E-2 - 6.856E-2 + 1.895E-2 - 8.369E-2 + 2.212E-3 - 1.040E-1 + 

8 156 4.688E-3 2.031E-3 - 7.052E-4 - 4.072E-3 = 5.039E-3 = 1.194E-3 - 9.954E-3 + 5.785E-3 = 1.603E-2 + 

+/−/=     8/20/4 7/23/2 9/19/4 17/11/4 9/17/6 17/11/4 11/18/3 29/3/0 

 

3. Selection of the Final Output from the Merged Population 
 

It is possible that a better solution set can be obtained from the two populations than choosing one population. It is likely that 

some good solutions are included in one population and other good solutions in the other population. This section compares two 

variants of MOEA/D-2PBI with the proposed MOEA/D-2PBI. For the first variant, the final output of MOEA/D-2PBI is the net 

set of non-dominated solutions in the merged population (i.e., denoted as MOEA/D-2PBI-ND). The second variant uses a 

hypervolume-based subset selection algorithm to select the final output from the merged population (i.e., denoted as MOEA/D-

2PBI-HVSel). The experimental results are presented in the following two subsections:   

 

3.1  Use of all the Non-Dominated Solutions 
 

The comparison results between MOEA/D-2PBI and MOEA/D-2PBI-ND are shown in Table S4 (as shown on the next page). 

Table S4 shows that (i) MOEA/D-2PBI-ND and MOEA/D-2PBI have almost the same performance on the DTLZ test problems, 
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and (ii) MOEA/D-2PBI-ND outperforms MOEA/D-2PBI on the Minus-DTLZ test problems. The first observation for DTLZ can 

be explained as follows. Since the DTLZ test problems have linear and concave Pareto fronts, all solutions by 𝜃 = 0 are only on 

the boundary of the Pareto front of each test problem. This is because the PBI function with 𝜃 = 0 is the same as the weighted 

sum. Many solutions are overlapping (i.e., the diversity of the obtained solutions is small). For those linear and concave Pareto 

fronts, the PBI function with 𝜃 = 5 works very well. Well-distributed solutions are obtained over the entire Pareto front including 

its boundary. As a result, the population with 𝜃 = 5 is always selected, and the hypervolume contributions of the solutions from 𝜃 

= 0 are very small in non-dominated solutions of the merged population. The second observation can be explained as follows. 

Since the Minus-DTLZ test problems have inverted triangular Pareto fronts, well-distributed solutions cannot be obtained by 

MOEA/D (i.e., by decomposition-based EMO algorithms with the predefined fixed weight vectors [1]). Thus, the obtained 

solution sets with 𝜃 = 5 are not good for Minus-DTLZ. The obtained solution sets with 𝜃 = 0 for Minus-DTLZ2-4 can be better 

since the PBI function with 𝜃 = 0 (i.e., the weighted sum) works well on those test problems with convex Pareto front. However, 

the uniformity of the obtained solution sets by the PBI function with 𝜃 = 0 is not very good. Moreover, different solutions are 

obtained from 𝜃 = 5 and 𝜃 = 0. As the result, the hypervolume of the non-dominated solutions of the merged population is 

clearly larger than that of each population. The second observation suggests the usefulness of subset selection from the merged 

population instead of choosing one of the two populations.  

The above-mentioned comparison is somewhat unfair since more solutions are obtained by MOEA/D-2PBI-ND than 

MOEA/D-2PBI (i.e., since a larger solution set usually has a better hypervolume value than a smaller solution set). For example, 

Fig. S2 shows the obtained solution sets by MOEA/D-2PBI and MOEA/D-2PBI-ND on the three-objective Minus-DTLZ2 

problem. A single run based on the median hypervolume over 31 runs is selected for each algorithm. As can be seen in Fig. S2, 

the final output of MOEA/D-2PBI-ND includes more solutions than that of MOEA/D-2PBI. 

 

 
TABLE S4.  

THE AVERAGE HYPERVOLUME VALUE OF EACH ALGORITHM ON A GIVEN TEST PROBLEM.  

Test Instance M MOEA/D-2PBI MOEA/D-2PBI-ND 
 3 1.117E+0 (2.01E-3) 1.117E+0 (2.05E-3) = 

DTLZ1 4 1.374E+0 (1.27E-3) 1.374E+0 (1.25E-3) = 
 6 1.750E+0 (5.76E-4) 1.750E+0 (5.52E-4) + 

 8 2.114E+0 (9.30E-3) 2.117E+0 (7.91E-3) = 
 3 7.437E-1 (2.82E-4) 7.437E-1 (2.82E-4) = 

DTLZ2 4 1.030E+0 (6.98E-4) 1.030E+0 (6.98E-4) = 
 6 1.512E+0 (7.61E-4) 1.512E+0 (7.61E-4) = 
 8 1.978E+0 (1.34E-3) 1.978E+0 (1.34E-3) = 
 3 4.485E-1 (2.35E-1) 4.485E-1 (2.35E-1) = 

DTLZ3 4 7.855E-1 (3.03E-1) 7.855E-1 (3.03E-1) = 
 6 1.463E+0 (2.61E-2) 1.463E+0 (2.59E-2) = 
 8 1.901E+0 (2.30E-2) 1.902E+0 (2.29E-2) = 
 3 5.785E-1 (1.85E-1) 5.785E-1 (1.85E-1) = 

DTLZ4 4 7.807E-1 (1.96E-1) 7.807E-1 (1.96E-1) = 
 6 1.226E+0 (2.00E-1) 1.226E+0 (2.00E-1) = 
 8 1.765E+0 (1.73E-1) 1.765E+0 (1.73E-1) = 

Minus-DTLZ1 

3 2.498E-1 (4.97E-3) 2.500E-1 (4.95E-3) = 

4 6.650E-2 (1.13E-3) 6.723E-2 (1.15E-3) + 

6 1.934E-3 (7.30E-6) 1.978E-3 (1.23E-5) + 

8 4.733E-5 (3.10E-6) 4.809E-5 (3.09E-6) + 

Minus-DTLZ2 

3 7.064E-1 (9.79E-5) 7.240E-1 (7.03E-4) + 

4 3.656E-1 (3.93E-4) 4.056E-1 (1.04E-3) + 

6 5.496E-2 (3.85E-4) 5.746E-2 (3.70E-4) + 

8 6.232E-3 (5.50E-5) 7.154E-3 (6.39E-5) + 

Minus-DTLZ3 

3 6.950E-1 (1.02E-2) 7.111E-1 (9.55E-3) + 

4 3.516E-1 (8.50E-3) 3.833E-1 (1.08E-2) + 

6 5.157E-2 (2.17E-3) 5.468E-2 (2.18E-3) + 

8 5.883E-3 (3.63E-4) 6.537E-3 (3.64E-4) + 

Minus-DTLZ4 

3 6.867E-1 (1.09E-1) 7.035E-1 (1.12E-1) + 

4 2.984E-1 (1.26E-1) 3.293E-1 (1.41E-1) + 

6 3.697E-2 (1.92E-2) 3.896E-2 (1.98E-2) + 

8 4.279E-3 (2.50E-3) 4.838E-3 (2.74E-3) + 

+/−/=    16/0/16 
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       (a) Median HV = 0.7064                                            (b) Median HV = 0.7240 

Fig. S2. The obtained solution sets by MOEA/D-2PBI and MOEA/D-2PBI-ND on the three-objective Minus-DTLZ2 problem. A single run based on the median 

hypervolume value over 31 runs is selected.  

 

3.2  Use of Subset Selection  
 

In MOEA/D-2PBI-HVSel, the final output is selected from a combined population using the greedy hypervolume subset 

selection process [2]. That is, N solutions are selected from 2N solutions in MOEA/D-2PBI-HVSel. The reference point for 

hypervolume contribution calculation is specified as (1.1, …, 1.1) for all test problems independent of the number of objectives. 

The comparison results between MOEA/D-2PBI and MOEA/D-2PBI-HVSel are shown in Table S5. As shown in Table S5, it 

is advantageous to use the hypervolume subset selection process in the proposed MOEA/D-2PBI for maximizing the 

hypervolume value of the final output.  

 

TABLE S5.  

THE AVERAGE HYPERVOLUME VALUE OF EACH ALGORITHM ON A GIVEN TEST PROBLEM.  

Test Instance M MOEA/D-2PBI MOEA/D-2PBI-HVSel 
 3 1.1169E+0 (2.01E-3) 1.1163E+0 (1.99E-3) = 

DTLZ1 4 1.3741E+0 (1.27E-3) 1.3738E+0 (1.56E-3) = 
 6 1.7497E+0 (5.76E-4) 1.7498E+0 (6.17E-4) = 
 8 2.1135E+0 (9.30E-3) 2.1163E+0 (9.11E-3) = 
 3 7.4372E-1 (2.82E-4) 7.4369E-1 (3.03E-4) = 

DTLZ2 4 1.0295E+0 (6.98E-4) 1.0299E+0 (5.37E-4) = 
 6 1.5117E+0 (7.61E-4) 1.5119E+0 (4.86E-4) = 
 8 1.9781E+0 (1.34E-3) 1.9784E+0 (1.44E-3) = 
 3 4.4850E-1 (2.35E-1) 3.9033E-1 (2.96E-1) = 

DTLZ3 4 7.8548E-1 (3.03E-1) 6.8973E-1 (3.75E-1) = 
 6 1.4626E+0 (2.61E-2) 1.4563E+0 (2.53E-2) = 
 8 1.9015E+0 (2.30E-2) 1.8956E+0 (2.37E-2) = 
 3 5.7853E-1 (1.85E-1) 5.3290E-1 (2.10E-1) = 

DTLZ4 4 7.8068E-1 (1.96E-1) 8.1688E-1 (2.32E-1) = 
 6 1.2257E+0 (2.00E-1) 1.2881E+0 (1.60E-1) = 
 8 1.7647E+0 (1.73E-1) 1.7694E+0 (1.31E-1) = 

Minus-DTLZ1 

3 2.4983E-1 (4.97E-3) 2.4984E-1 (6.94E-3) = 

4 6.6495E-2 (1.13E-3) 6.7034E-2 (7.97E-4) + 

6 1.9345E-3 (7.30E-6) 1.9738E-3 (1.03E-5) + 

8 4.7327E-5 (3.10E-6) 4.8467E-5 (1.42E-6) + 

Minus-DTLZ2 

3 7.0640E-1 (9.79E-5) 7.1417E-1 (4.23E-4) + 

4 3.6562E-1 (3.93E-4) 3.9374E-1 (1.08E-3) + 

6 5.4959E-2 (3.85E-4) 5.1697E-2 (3.33E-4) - 

8 6.2322E-3 (5.50E-5) 6.7223E-3 (5.88E-5) + 

Minus-DTLZ3 

3 6.9499E-1 (1.02E-2) 7.0239E-1 (9.82E-3) + 

4 3.5158E-1 (8.50E-3) 3.7346E-1 (1.03E-2) + 

6 5.1572E-2 (2.17E-3) 5.1501E-2 (2.20E-3) = 

8 5.8831E-3 (3.63E-4) 6.3017E-3 (3.95E-4) + 

Minus-DTLZ4 

3 6.8669E-1 (1.09E-1) 6.5439E-1 (1.85E-1) - 

4 2.9844E-1 (1.26E-1) 3.7141E-1 (7.99E-2) + 

6 3.6973E-2 (1.92E-2) 4.4081E-2 (1.35E-2) = 

8 4.2792E-3 (2.50E-3) 4.1218E-3 (2.35E-3) - 

+/−/=    10/3/19 

 

However, one potential difficulty with the use of the hypervolume subset selection is that uniformly distributed solutions may 

not always be obtained as the final output. As discussed in [3], the optimal solution distribution of hypervolume maximization 

may not always result in a uniformly distributed solution set. As an example, Fig. S3 shows the obtained solution sets by 

MOEA/D-2PBI and MOEA/D-2PBI-HVSel on the three-objective Minus-DTLZ2 problem. A single run based on the median 
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hypervolume value of 31 runs is selected. The hypervolume value of each solution set is also shown in the caption. It can be seen 

that whereas the solution set obtained by MOEA/D-2PBI-HVSel has a larger hypervolume value than the solution set obtained 

by MOEA/D-2PBI, it is not very uniformly distributed. Another difficulty is that an efficient greedy algorithm does not always 

find a near optimal solution set (as shown in Table S5 where better results are not always obtained from subset selection). 

Whereas better results will be obtained from exact subset selection algorithms, their use for many-objective problems is usually 

very difficult due to their long computation time.  

 

         

         (a) Median HV = 0.7064                                                (b) Median HV = 0.7142 

Fig. S3. The obtained solution sets by MOEA/D-2PBI and MOEA/D-2PBI-HVSel on the three-objective Minus-DTLZ2 problem. A single run based on the 

median hypervolume value over 31 runs is selected.  

 

4. Use of More than Two Populations 

 
This section studies the effect of using more than two populations in the proposed algorithm. Here, a variant of the proposed 

algorithm with six populations each with 𝜃  = 0, 1, 2, 3, 4, and 5 are considered (denoted as MOEA/D-6PBI).  The basic 

algorithm framework of MOEA/D-6PBI is the same as that for MOEA/D-2PBI, explained as follows:  

 
Algorithm S1: MOEA/D-6PBI 

Input:  A multi-objective optimization problem, a termination condition, a population size N, and a neighbourhood size Tn.    

Step 1: Randomly generate 6N solutions as initial solutions, and randomly assign them to the six populations, i.e., Population 1 

(θ = 0), Population 2 (θ = 1), Population 3 (θ = 2), Population 4 (θ = 3), Population 5 (θ = 4), and Population 6 (θ = 5).   

Step 2:  Apply the standard MOEA/D procedure with PBI (θ = 0) to each of the N solutions in Population 1 once. Population 2, 

Population 3, Population 4, Population 5, and Population 6 are updated by each generated solution in Population 1. 

Populations 2, 3, 4, 5 and 6 are handled as an archive where the entire population is used as the replacement 

neighbourhood for each solution generated in Population 1. When a new solution is generated in each population, the 

reference point is always updated.  

Step 3:  Apply the standard MOEA/D procedure with PBI (θ = 1) to each of the N solutions in Population 2 once. Population 1, 

Population 3, Population 4, Population 5, and Population 6 are updated by each generated solution in Population 2. 

Populations 1, 3, 4, 5 and 6 are handled as an archive where the entire population is used as the replacement 

neighbourhood for each solution generated in Population 2. The shared reference point 𝒛∗ is always updated.  

Step 4:  Apply the standard MOEA/D procedure with PBI (θ = 2) to each of the N solutions in Population 3 once. Population 1, 

Population 2, Population 4, Population 5, and Population 6 are updated by each generated solution in Population 3. 

Populations 1, 2, 4, 5, and 6 are handled as an archive where the entire population is used as the replacement 

neighbourhood for each solution generated in Population 3. The shared reference point 𝒛∗ is always updated. 

Step 5:  Apply the standard MOEA/D procedure with PBI (θ = 3) to each of the N solutions in Population 4 once. Population 1, 

Population 2, Population 3, Population 5, and Population 6 are updated by each generated solution in Population 4. 

Populations 1, 2, 3, 5, and 6 are handled as an archive where the entire population is used as the replacement 

neighbourhood for each solution generated in Population 4. The shared reference point 𝒛∗ is always updated. 

Step 6: Apply the standard MOEA/D procedure with PBI (θ = 4) to each of the N solutions in Population 5 once. Population 1, 

Population 2, Population 3, Population 4, and Population 6 are updated by each generated solution in Population 5. 

Populations 1, 2, 3, 4, and 6 are handled as an archive where the entire population is used as the replacement 

neighbourhood for each solution generated in Population 5. The shared reference point 𝒛∗ is always updated. 

Step 7: Apply the standard MOEA/D procedure with PBI (θ = 5) to each of the N solutions in Population 6 once. Population 1, 

Population 2, Population 3, Population 4, and Population 5 are updated by each generated solution in Population 6. 

Populations 1, 2, 3, 4, and 5 are handled as an archive where the entire population is used as the replacement 

neighbourhood for each solution generated in Population 6. The shared reference point 𝒛∗ is always updated. 

Step 8:  Iterate Step 2 to Step 7 until the termination condition is reached. The generation update consists of Step 2 to Step 7. The 

output is the best population among the six populations, which is selected based on their hypervolume values (calculated 

using the estimated ideal and nadir points).  
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The experimental results are presented in Tables S6-S8. Table S6 shows that MOEA/D-6PBI with six populations outperforms 

MOEA/D-2PBI on 22 test instances. The experimental results suggest that using more than two populations simultaneously can 

potentially further improve the performance of our proposed algorithm. This observation can be explained as follows. All the test 

problems in Table S6 are not difficult. Thus, it is likely that most populations in MOEA/D-2PBI and MOEA/D-6PBI are well 

converged to the Pareto front and they cover the entire Pareto front. Thus, the best population among the six populations is likely 

to be better than the best population among the two populations as shown in Table S6. 

However, MOEA/D-2PBI outperforms MOEA/D-6PBI on multi-objective knapsack problems in Table S7 and large-scale 

many-objective problems in Table S8. Since our computational experiments on each test problem is performed under the pre-

specified computation load (i.e., the pre-specified number of solutions to be examined), the increase in the number of populations 

decreases the total number of generations. This has a negative effect on the performance of MOEA/D-6PBI on difficult test 

problems which need a large number of generations. As a result, MOEA/D-2PBI outperforms MOEA/D-6PBI on large-scale 

many-objective problems in Table S8 and multi-objective knapsack problems in Table S9. 

 

 
TABLE S6.  

THE AVERAGE HYPERVOLUME VALUE OF EACH ALGORITHM ON A GIVEN TEST 

PROBLEM.  

Test Instance M MOEA/D-2PBI MOEA/D-6PBI 
 3 1.117E+0 (2.01E-3) 1.117E+0 (1.80E-3) = 

DTLZ1 4 1.374E+0 (1.27E-3) 1.374E+0 (1.69E-3) = 
 6 1.750E+0 (5.76E-4) 1.750E+0 (7.74E-4) = 

 8 2.114E+0 (9.30E-3) 2.099E+0 (1.57E-2) - 
 3 7.437E-1 (2.82E-4) 7.446E-1 (5.84E-5) + 

DTLZ2 4 1.030E+0 (6.98E-4) 1.032E+0 (1.21E-4) + 
 6 1.512E+0 (7.61E-4) 1.513E+0 (1.32E-4) + 
 8 1.978E+0 (1.34E-3) 1.980E+0 (7.13E-4) + 
 3 4.485E-1 (2.35E-1) 4.372E-1 (3.03E-1) = 

DTLZ3 4 7.855E-1 (3.03E-1) 9.267E-1 (1.78E-1) + 
 6 1.463E+0 (2.61E-2) 1.484E+0 (1.72E-2) + 
 8 1.901E+0 (2.30E-2) 1.952E+0 (1.47E-2) + 
 3 5.785E-1 (1.85E-1) 6.776E-1 (1.23E-1) + 

DTLZ4 4 7.807E-1 (1.96E-1) 8.682E-1 (1.21E-1) + 
 6 1.226E+0 (2.00E-1) 1.352E+0 (1.48E-1) + 
 8 1.765E+0 (1.73E-1) 1.798E+0 (1.37E-1) = 

Minus-DTLZ1 

3 2.498E-1 (4.97E-3) 2.631E-1 (5.38E-4) + 

4 6.650E-2 (1.13E-3) 7.254E-2 (2.79E-4) + 

6 1.934E-3 (7.30E-6) 2.122E-3 (7.81E-6) + 

8 4.733E-5 (3.10E-6) 4.499E-5 (4.89E-6) - 

Minus-DTLZ2 

3 7.064E-1 (9.79E-5) 7.060E-1 (1.82E-4) - 

4 3.656E-1 (3.93E-4) 3.981E-1 (1.04E-3) + 

6 5.496E-2 (3.85E-4) 6.556E-2 (5.98E-4) + 

8 6.232E-3 (5.50E-5) 1.041E-2 (1.50E-4) + 

Minus-DTLZ3 

3 6.950E-1 (1.02E-2) 6.871E-1 (1.40E-2) - 

4 3.516E-1 (8.50E-3) 3.763E-1 (1.09E-2) + 

6 5.157E-2 (2.17E-3) 6.178E-2 (1.99E-3) + 

8 5.883E-3 (3.63E-4) 9.149E-3 (5.00E-4) + 

Minus-DTLZ4 

3 6.867E-1 (1.09E-1) 6.864E-1 (1.09E-1) - 

4 2.984E-1 (1.26E-1) 3.444E-1 (1.24E-1) + 

6 3.697E-2 (1.92E-2) 5.110E-2 (2.21E-2) + 

8 4.279E-3 (2.50E-3) 6.576E-3 (3.87E-3) + 

+/−/=    22/5/5 

 

 

 

 
 

 

TABLE S7.  
THE AVERAGE HYPERVOLUME VALUE OF EACH ALGORITHM ON THE HTNY19 

PROBLEM. THE NUMBER OF DECISION VARIABLES IS THE SAME AS THE 

NUMBER OF OBJECTIVES. 

Test Instance M MOEA/D-2PBI MOEA/D-6PBI 

HTNY19 

3 1.1106 (2.01E-3) 1.1203 (2.17E-5) + 

4 1.3728 (1.82E-3) 1.3766 (1.88E-5) + 

6 1.7505 (9.41E-4) 1.7512 (3.27E-5) + 

 8 2.1384 (9.90E-5) 2.1384 (2.31E-4) = 

+/−/=    3/0/1 

 

TABLE S8.  
THE AVERAGE HYPERVOLUME VALUE OF EACH ALGORITHM ON THE EIGHT-

OBJECTIVE HTNY19 PROBLEM WITH DIFFERENT NUMBER OF DECISION 

VARIABLE. 

Test Instance D MOEA/D-2PBI MOEA/D-6PBI 

HTNY19 

(M=8) 

8 2.1384 (9.90E-5) 2.1384 (2.31E-4) = 

40 2.1372 (4.19e-4) 2.1349 (2.27e-3) - 

80 2.1364 (6.27e-4) 2.1336 (2.30e-3) - 

120 2.1356 (6.51e-4) 2.1330 (2.53e-3) - 

+/−/=    0/3/1 

 

TABLE S9.  

THE AVERAGE HYPERVOLUME VALUE OF EACH ALGORITHM ON THE MANY-

OBJECTIVE KNAPSACK TEST PROBLEMS.  

Test Instance M MOEA/D-2PBI MOEA/D-6PBI 

2-500 2 3.843E+8 (1.46E+6) 3.765E+8 (1.72E+6) - 

4-500 4 1.013E+17 (7.83E+14) 9.551E+16 (9.69E+14) - 

6-500 6 2.073E+25 (3.94E+23) 1.892E+25 (3.57E+23) - 

8-500 8 4.513E+33 (3.08E+32) 4.140E+33 (5.65E+31) - 

+/−/=    0/4/0 

 

5. Sensitivity Analysis for the Penalty Parameter Value in the Second Population  

 

In this section, we explain how the penalty parameter values were chosen for the two populations in MOEA/D-2PBI. It has 

been shown in [4] and [5] that a very small value of θ is good for convergence. Thus, the value 0 is chosen as the parameter to 

represent a very small value of θ. Since θ =5 is a frequently used in many MOEA/D-PBI studies (and good experimental results 

are reported using this setting), we used this setting as a large penalty parameter value. The other values ( θ ∈
{1, 2, 3, 4, 6, 7, 8, 9, 10}) were also examined for Population 2. The experimental results are shown in Table S10. It can be seen 

from Table S10 that the best setting is problem dependent. It can also be seen that similar results are obtained on many test 

problems from all settings except for θ = 1. Whereas the specification of θ = 5 is not necessarily the best in Table S10, we use 

this setting since good results are obtained from θ = 5 on the other test problems in the paper and θ = 5 has been frequently used 

in the literature. 
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TABLE S10.  

THE AVERAGE HYPERVOLUME OF EACH ALGORITHM ON A GIVEN TEST PROBLEM. 𝜃 IS SPECIFIED AS 0 IN POPULATION 1. 𝜃2 DENOTES THE SPECIFIED PENALTY 

PARAMETER VALUE IN POPULATION 2.   

Test 

Instance 
M 𝜃2 = 5 𝜃2 = 1 𝜃2 = 2 𝜃2 = 3 𝜃2 = 4 𝜃2 = 6 𝜃2 = 7 𝜃2 = 8 𝜃2 = 9 𝜃2 = 10 

 3 1.117E+0 1.076E+0 - 1.117E+0 = 1.116E+0 = 1.116E+0 = 1.115E+0 - 1.115E+0 = 1.113E+0 - 1.115E+0 = 1.115E+0 - 
DTLZ1 4 1.374E+0 1.268E+0 - 1.374E+0 = 1.374E+0 = 1.374E+0 = 1.373E+0 = 1.374E+0 = 1.373E+0 = 1.374E+0 = 1.372E+0 = 

 6 1.750E+0 1.643E+0 - 1.725E+0 - 1.747E+0 - 1.749E+0 = 1.750E+0 + 1.750E+0 + 1.750E+0 + 1.750E+0 + 1.750E+0 + 
 8 2.114E+0 1.902E+0 - 1.889E+0 - 2.074E+0 - 2.101E+0 - 2.118E+0 + 2.121E+0 + 2.123E+0 + 2.123E+0 + 2.124E+0 + 
 3 7.437E-1 6.761E-1 - 7.442E-1 + 7.440E-1 + 7.439E-1 = 7.435E-1 - 7.434E-1 - 7.432E-1 - 7.432E-1 - 7.432E-1 - 

DTLZ2 4 1.030E+0 5.985E-1 - 1.031E+0 + 1.030E+0 + 1.030E+0 + 1.029E+0 = 1.029E+0 - 1.029E+0 - 1.029E+0 - 1.028E+0 - 
 6 1.512E+0 6.716E-1 - 1.513E+0 + 1.512E+0 + 1.512E+0 + 1.511E+0 - 1.511E+0 = 1.511E+0 - 1.511E+0 - 1.511E+0 - 
 8 1.978E+0 6.795E-1 - 1.979E+0 = 1.980E+0 + 1.978E+0 = 1.978E+0 = 1.978E+0 = 1.976E+0 - 1.976E+0 - 1.975E+0 - 
 3 4.485E-1 4.918E-1 = 5.371E-1 + 3.903E-1 = 3.823E-1 = 2.800E-1 - 3.139E-1 = 2.819E-1 - 2.979E-1 = 2.427E-1 - 

DTLZ3 4 7.855E-1 4.901E-1 - 9.073E-1 + 8.746E-1 + 7.580E-1 = 7.045E-1 = 6.505E-1 = 6.298E-1 = 5.303E-1 - 6.194E-1 = 
 6 1.463E+0 6.546E-1 - 1.449E+0 = 1.458E+0 = 1.463E+0 = 1.444E+0 = 1.404E+0 = 1.402E+0 = 1.347E+0 - 1.310E+0 - 
 8 1.901E+0 6.673E-1 - 1.837E+0 - 1.894E+0 = 1.893E+0 = 1.887E+0 - 1.896E+0 = 1.895E+0 = 1.896E+0 = 1.894E+0 = 
 3 5.785E-1 4.372E-1 - 4.921E-1 = 5.224E-1 = 5.315E-1 = 5.291E-1 = 5.251E-1 = 5.152E-1 = 4.635E-1 = 5.905E-1 = 

DTLZ4 4 7.807E-1 5.021E-1 - 7.910E-1 = 7.997E-1 = 8.125E-1 = 8.639E-1 = 8.621E-1 = 8.272E-1 = 8.425E-1 = 8.078E-1 = 
 6 1.226E+0 5.446E-1 - 1.213E+0 = 1.225E+0 = 1.217E+0 = 1.273E+0 = 1.302E+0 = 1.251E+0 = 1.282E+0 = 1.303E+0 = 
 8 1.765E+0 6.316E-1 - 1.419E+0 - 1.515E+0 - 1.714E+0 = 1.749E+0 = 1.761E+0 = 1.747E+0 = 1.788E+0 = 1.759E+0 = 

Minus-

DTLZ1 

3 2.498E-1 2.625E-1 + 2.604E-1 + 2.574E-1 + 2.525E-1 + 2.463E-1 - 2.411E-1 - 2.392E-1 - 2.374E-1 - 2.327E-1 - 

4 6.650E-2 7.387E-2 + 7.172E-2 + 6.841E-2 + 6.715E-2 + 6.606E-2 = 6.555E-2 - 6.547E-2 - 6.540E-2 - 6.518E-2 - 

6 1.934E-3 1.676E-3 - 2.125E-3 + 2.002E-3 + 1.934E-3 = 1.936E-3 = 1.933E-3 = 1.939E-3 = 1.934E-3 = 1.935E-3 = 

8 4.733E-5 4.967E-5 + 4.793E-5 = 4.698E-5 = 4.781E-5 = 4.633E-5 = 4.757E-5 = 4.733E-5 = 4.750E-5 = 4.712E-5 = 

Minus-

DTLZ2 

3 7.064E-1 7.063E-1 - 7.064E-1 = 7.064E-1 = 7.064E-1 = 7.064E-1 = 7.064E-1 = 7.064E-1 = 7.064E-1 = 7.064E-1 = 

4 3.656E-1 3.658E-1 + 3.994E-1 + 3.849E-1 + 3.658E-1 = 3.657E-1 = 3.657E-1 = 3.656E-1 = 3.658E-1 = 3.657E-1 = 

6 5.496E-2 6.685E-2 + 6.182E-2 + 6.183E-2 + 5.814E-2 + 5.301E-2 - 5.150E-2 - 4.993E-2 - 4.886E-2 - 4.820E-2 - 

8 6.232E-3 1.104E-2 + 5.035E-3 - 5.941E-3 - 6.260E-3 = 6.093E-3 - 5.911E-3 - 5.712E-3 - 5.559E-3 - 5.411E-3 - 

Minus-
DTLZ3 

3 6.950E-1 6.959E-1 = 6.976E-1 = 6.933E-1 = 6.942E-1 = 6.965E-1 = 6.907E-1 = 6.956E-1 = 6.897E-1 = 6.893E-1 - 

4 3.516E-1 3.599E-1 + 3.798E-1 + 3.637E-1 + 3.543E-1 = 3.534E-1 = 3.532E-1 = 3.527E-1 = 3.522E-1 = 3.528E-1 = 

6 5.157E-2 6.181E-2 + 5.923E-2 + 5.870E-2 + 5.433E-2 + 4.878E-2 - 4.771E-2 - 4.604E-2 - 4.542E-2 - 4.421E-2 - 

8 5.883E-3 1.030E-2 + 5.165E-3 - 5.801E-3 = 5.970E-3 = 5.669E-3 - 5.559E-3 - 5.299E-3 - 5.005E-3 - 4.829E-3 - 

Minus-

DTLZ4 

3 6.867E-1 6.615E-1 - 6.473E-1 = 6.867E-1 = 6.867E-1 = 6.866E-1 - 6.278E-1 - 7.063E-1 = 6.667E-1 - 6.668E-1 - 

4 2.984E-1 3.046E-1 = 3.348E-1 + 3.521E-1 + 2.986E-1 = 3.268E-1 = 3.462E-1 = 2.986E-1 = 3.270E-1 = 3.176E-1 = 

6 3.697E-2 4.579E-2 + 4.226E-2 = 4.539E-2 + 5.026E-2 + 4.159E-2 + 4.035E-2 + 3.511E-2 - 3.946E-2 = 2.758E-2 - 

8 4.279E-3 5.736E-3 = 3.906E-3 - 3.644E-3 - 4.245E-3 - 4.543E-3 + 3.532E-3 - 4.157E-3 - 3.435E-3 - 4.111E-3 - 

+/−/=    10/18/4 13/7/12 14/5/13 7/2/23 4/11/17 3/10/19 2/14/16 2/14/16 2/17/13 

 

6. Computational Complexity of the Proposed MOEA/D-2PBI Algorithm 
 

In order to analyze the computational complexity of the proposed MOEA/D-2PBI algorithm, we first consider the 

computational complexity of the standard MOEA/D algorithm [6]. In each generation, the computational complexity of the 

standard MOEA/D was reported as 𝑂(𝑀𝑁Tn) [6], where 𝑀 is the number of objectives, N is the population size and Tn is the 

neighborhood size. In Step 2 and Step 3 of the MOEA/D-2PBI algorithm, the standard MOEA/D procedure is applied to one 

population and another population is treated as an archive. When a new offspring is generated in these steps, the entire 

population is used as the replacement neighborhood. Since each newly generated solution needs to be compared with the entire 

population of N solutions, the computational complexity of MOEA/D-2PBI in one generation is dominated by 𝑂(𝑀𝑁2). In 

addition, since MOEA/D-2PBI needs to calculate the hypervolume value of two populations at the end of the algorithm in order 

to determine the final output, the overall complexity of the algorithm is dominated by the hypervolume calculation. In our study, 

we use the WFG algorithm [7], one of the fastest methods for hypervolume calculation in the literature. The worst-case time 

complexity of the WFG algorithm was reported as 𝑂(𝑁𝑀−1) and the lower bound was reported as 𝛺(𝑁𝑀 2⁄ log 𝑁) [8]. In terms of 

space complexity, the proposed MOEA/D-2PBI algorithm requires 2N space since two populations of size N must be maintained 

during the search process, which is two times larger than the standard MOEA/D algorithm.  

 

7. Performance Comparison in Terms of Runtime 
 

The comparison with the other algorithms in running time is given in Tables S11-S14 below. In particular, Table S11 shows 

the average running time of all algorithms on DTLZ and Minus-DTLZ test instances, Table S12 and Table S13 show the average 

running time of all algorithms on the HTNY19 test instances (with different specifications of the number of objectives and the 

number of decision variables), and Table S14 shows the average running time of all algorithms on the many-objective knapsack 

test problems.  
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Comparing MOEA/D-2PBI to the hypervolume-based algorithm (i.e., R2HCA-EMOA), MOEA/D-2PBI is clearly more 

efficient. This is because hypervolume calculation is performed only at the final stage of MOEA/D-2PBI in order to choose a 

better population between the two populations whereas R2HCA-EMOA needs to calculate the hypervolume contribution of each 

solution every generation. In comparison with AdaW and Two_Arch2, MOEA/D-2PBI seems to have better running efficiency 

especially when many objectives are involved. NSGA-III, RVEA, MOEA/D-APS, MOEA/D-AWA, and 𝜃 -DEA are more 

efficient in terms of running time than MOEA/D-2PBI.  

 
 

TABLE S11.  

THE AVERAGE RUNTIME (IN SECONDS) OF EACH ALGORITHM ON THE DTLZ AND MINUS-DTLZ TEST PROBLEMS. 

Test 
Instance 

M 
MOEA/D-

2PBI 
NSGA-III RVEA 

MOEA/D-
AWA 

AdaW 
MOEA/D-

APS 
Two_Arch2 𝜃-DEA 

R2HCA-
EMOA 

 3 5.22 1.20 + 1.06 + 6.62 - 7.95 - 3.68 + 5.32 = 0.89 + 52.00 - 

DTLZ1 4 7.52 1.89 + 0.87 + 9.36 - 12.72 - 4.87 + 10.32 - 1.45 + 135.35 - 
 6 12.93 2.34 + 1.01 + 13.70 - 20.46 - 6.95 + 22.74 - 1.87 + 278.38 - 
 8 62.64 3.24 + 1.57 + 18.29 + 46.36 + 8.90 + 42.14 + 2.83 + 628.29 - 
 3 5.18 1.19 + 0.56 + 6.70 - 10.41 - 3.55 + 9.88 - 0.95 + 80.10 - 

DTLZ2 4 7.49 1.55 + 0.74 + 9.83 - 18.36 - 4.81 + 20.02 - 1.31 + 199.50 - 
 6 12.22 2.31 + 1.04 + 14.59 - 33.90 - 6.90 + 36.39 - 2.01 + 410.37 - 
 8 42.52 3.32 + 1.46 + 20.26 + 127.76 - 8.77 + 64.28 - 2.89 + 846.73 - 
 3 5.23 1.18 + 0.57 + 6.62 - 5.31 = 3.63 + 3.23 + 0.94 + 39.79 - 

DTLZ3 4 7.56 1.63 + 0.74 + 9.67 - 9.83 - 4.92 + 5.92 + 1.25 + 100.53 - 
 6 11.85 2.17 + 1.05 + 11.98 = 18.10 - 7.00 + 18.94 - 1.71 + 221.82 - 
 8 33.11 2.72 + 1.42 + 17.04 + 42.23 - 8.96 + 35.56 - 2.29 + 563.18 - 
 3 5.33 1.33 + 0.55 + 6.88 - 10.19 - 3.67 + 8.71 - 1.03 + 65.84 - 

DTLZ4 4 7.57 1.53 + 0.76 + 9.10 - 18.63 - 4.96 + 18.16 - 1.23 + 239.30 - 
 6 11.09 2.19 + 1.08 + 13.36 - 35.13 - 7.07 + 34.35 - 1.80 + 409.72 - 
 8 15.88 3.07 + 1.46 + 18.83 - 145.28 - 8.99 + 61.05 - 2.59 + 866.68 - 

Minus-

DTLZ1 

3 5.24 1.21 + 0.39 + 6.62 - 9.14 - 3.60 + 8.30 - 0.94 + 69.76 - 

4 7.46 1.48 + 0.48 + 8.42 - 15.94 - 4.85 + 16.98 - 1.20 + 193.92 - 

6 11.07 2.43 + 0.68 + 12.99 - 30.83 - 7.00 + 32.42 - 1.99 + 408.30 - 

8 17.43 3.28 + 0.86 + 17.85 - 145.25 - 8.78 + 57.10 - 2.66 + 867.84 - 

Minus-
DTLZ2 

3 5.28 1.25 + 0.48 + 7.10 - 9.74 - 3.57 + 8.67 - 0.98 + 80.37 - 

4 7.72 1.53 + 0.57 + 8.73 - 18.42 - 4.82 + 17.86 - 1.26 + 228.49 - 

6 12.73 2.47 + 0.77 + 13.17 - 34.98 - 7.00 + 33.39 - 2.11 + 426.90 - 

8 44.94 3.30 + 1.05 + 18.48 + 148.93 - 8.73 + 58.84 - 2.68 + 887.98 - 

Minus-

DTLZ3 

3 5.33 1.21 + 0.49 + 6.44 - 7.71 - 3.66 + 7.29 - 0.95 + 57.72 - 

4 7.73 1.51 + 0.58 + 8.51 - 14.68 - 4.93 + 14.76 - 1.22 + 174.01 - 

6 12.81 2.42 + 0.78 + 13.12 - 28.46 - 7.08 + 30.13 - 2.06 + 375.88 - 

8 42.67 3.27 + 1.07 + 18.52 + 139.59 - 8.92 + 54.31 - 2.68 + 828.69 - 

Minus-

DTLZ4 

3 5.31 1.26 + 0.48 + 6.72 - 9.63 - 3.68 + 8.71 - 1.02 + 83.35 - 

4 7.71 1.57 + 0.59 + 8.97 - 18.35 - 4.93 + 18.02 - 1.28 + 229.12 - 

6 12.2 2.52 + 0.78 + 13.53 - 34.73 - 7.17 + 34.14 - 2.21 + 431.38 - 

8 31.03 3.40 + 1.04 + 18.93 + 153.17 - 8.97 + 60.44 - 2.83 + 878.54 - 

+/−/=    32/0/0 32/0/0 6/25/1 1/30/1 32/0/0 3/28/1 32/0/0 0/32/0 

 

 
 

TABLE S12. 

THE AVERAGE RUNTIME (IN SECONDS) OF EACH ALGORITHM ON THE HTNY19 PROBLEM. THE NUMBER OF DECISION VARIABLES IS THE SAME AS THE NUMBER OF 

OBJECTIVES. 

Test Instance M 

MOEA/D-

2PBI 

(𝜃 = 5 and 

𝜃 = 0)  

MOEA/D-

PBI 

(𝜃 = 0) 

MOEA/D-

PBI 

(𝜃 = 5)  
NSGA-III RVEA 

MOEA/D-
AWA 

AdaW 
MOEA/D-

APS 
Two_Arch2 𝜃-DEA 

R2HCA-
EMOA 

HTNY19 

3 89.08 60.91 + 61.92 + 12.24 + 10.12 + 62.68 + 125.70 - 61.96 + 70.20 + 9.81 + 679.31 - 

4 127.48 82.67 + 83.67 + 15.37 + 13.86 + 87.31 + 206.02 - 84.65 + 134.42 - 11.88 + 1548.62 - 

6 142.76 89.34 + 90.26 + 17.13 + 14.78 + 95.99 + 257.36 - 90.31 + 210.04 - 13.05 + 2578.70 - 

 8 537.75 110.20 + 112.16 + 24.12 + 20.31 + 175.10 + 1528.34 - 112.31 + 378.58 + 19.23 + 6544.40 - 

+/−/=    4/0/0 4/0/0 4/0/0 4/0/0 4/0/0 0/4/0 4/0/0 2/2/0 4/0/0 0/4/0 
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TABLE S13. 

THE AVERAGE RUNTIME (IN SECONDS) OF EACH ALGORITHM ON THE EIGHT-OBJECTIVE HTNY19 PROBLEM WITH DIFFERENT NUMBER OF DECISION VARIABLES. 

Test Instance D 

MOEA/D-

2PBI 

(𝜃 = 5 and 

𝜃 = 0) 

MOEA/D-

PBI 

(𝜃 = 0) 

MOEA/D-

PBI 

(𝜃 = 5) 
NSGA-III RVEA 

MOEA/D-

AWA 
AdaW 

MOEA/D-

APS 
Two_Arch2 𝜃-DEA 

R2HCA-

EMOA 

HTNY19 

(M=8) 

8 537.75 110.20 + 112.16 + 24.12 + 20.31 + 175.10 + 1528.34 - 112.31 + 378.58 + 19.23 + 6544.40 - 

40 830.7 215.60 + 212.61 + 60.02 + 30.05 + 284.56 + 1852.08 - 125.22 + 472.37 + 52.77 + 7517.23 - 

80 949.73 221.14 + 224.34 + 65.54 + 35.41 + 301.55 + 1940.93 - 132.99 + 536.05 + 59.11 + 7818.07 - 

120 1017.78 234.77 + 241.18 + 75.17 + 39.61 + 301.11 + 1937.15 - 139.90 + 585.33 + 66.52 + 6688.52 - 

+/−/=    4/0/0 4/0/0 4/0/0 4/0/0 4/0/0 0/4/0 4/0/0 4/0/0 4/0/0 0/4/0 

 
TABLE S14. 

THE AVERAGE RUNTIME (IN SECONDS) OF EACH ALGORITHM ON THE MANY-OBJECTIVE KNAPSACK TEST PROBLEMS.  

Test 

Instance 
M 

MOEA/D-

2PBI 

(𝜃 = 5 and 

𝜃 = 0) 

MOEA/D-

PBI 

(𝜃 = 0) 

MOEA/D-

PBI 

(𝜃 = 5) 

NSGA-III RVEA 
MOEA/D-

AWA 
AdaW 

MOEA/D-

APS 
Two_Arch2 𝜃-DEA 

R2HCA- 

EMOA 

2-500 2 80.36 51.35 + 52.32 + 20.77 + 19.29 + 55.18 + 112.48 - 52.72 + 74.16 + 18.33 + 683.73 - 

4-500 4 88.73 57.42 + 56.86 + 23.09 + 16.90 + 65.29 + 143.32 - 57.13 + 110.74 - 19.88 + 957.00 - 

6-500 6 94.21 61.44 + 59.31 + 26.84 + 19.26 + 69.16 + 171.25 - 61.39 + 149.70 - 24.41 + 1288.36 - 

8-500 8 94.69 62.42 + 58.54 + 28.34 + 18.26 + 65.88 + 171.58 - 58.81 + 170.99 - 23.31 + 1582.04 - 

+/−/=    4/0/0 4/0/0 4/0/0 4/0/0 4/0/0 0/4/0 4/0/0 1/3/0 4/0/0 0/4/0 

 

 

8. Obtained Solution Sets by Different Algorithms on the Four-objective Conceptual Marine Design Problem    

 

        

     

      

Fig. S4. The obtained solution sets for the four-objective conceptual marine design problem by different algorithms. 
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9. Formulations of the Multi-objective Knapsack Problems Used in Section V of the Paper  
 

The formulation of the two-objective knapsack problem with 500 items is the one used in Zitzler and Thiele [9], which has the 

following formulation:  

 Maximize f(x) = (𝑓1(𝒙), 𝑓2(𝒙))T, (1) 

     subject to 𝜔𝑖1𝑥1 + 𝜔𝑖2𝑥2+. . . +𝜔𝑖500𝑥500 ≤ 𝑐𝑎𝑝𝑖 , 𝑖 =1, 2,    (2) 

𝑥𝑗 =0 or 1, 𝑗 =1, 2, …, 500,     (3) 

where  𝑓𝑖(𝒙) = 𝛼𝑖1𝑥1 + 𝛼𝑖2𝑥2+. . . +𝛼𝑖500𝑥500,    𝑖 =1, 2.   (4) 

Here, 𝒙 is a 500-dimensional binary vector, 𝜔𝑖𝑗  is the weight of item 𝑗 with respect to knapsack 𝑖, 𝛼𝑖𝑗  is the profit of item 𝑗 with 

respect to knapsack 𝑖, and 𝑐𝑎𝑝𝑖  is the capacity of knapsack 𝑖 (𝑖 =1, 2 and 𝑗 =1, 2, …, 500). In [9], the values of 𝜔𝑖𝑗  and 𝛼𝑖𝑗 were 

generated at random as integers between 10 and 100, and each knapsack 𝑖 was specified to have a capacity 𝑐𝑎𝑝𝑖  of 50% of the 

total weight of all items in knapsack 𝑖. As in [4], we refer this two-objective 500-item knapsack problem as 2-500 problem in this 

paper. For the four-, six-, and eight-objective 500-item knapsack problems, the problems generated in [4] are used. They were 

defined in the following manner. The first two objectives were the same as in the 2-500 problem. The remaining objectives were 

generated as follows:  

𝑓𝑖(𝒙) = 𝛼𝑖1𝑥1 + 𝛼𝑖2𝑥2+. . . +𝛼𝑖500𝑥500 , 𝑖 =3, 4, …, 8.   (5) 

The same constraint conditions in (2) and (3) were used by all the test problems with 500 items. 
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