
This paper has been published as "Y. Nan, K. Shang, H. Ishibuchi and L. He, “Reverse Strategy for Non-Dominated Archiving,” IEEE
Access, vol. 8, pp. 119458-119469, Jun. 2020. DOI: 10.1109/ACCESS.2020.3005970"

Digital Object Identifier 10.1109/ACCESS.2020.DOI

Reverse Strategy for Non-dominated
Archiving
YANG NAN, KE SHANG, HISAO ISHIBUCHI, (Fellow, IEEE), AND LINJUN HE
Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of
Science and Technology, Shenzhen 518055, China.

Corresponding author: Hisao Ishibuchi (e-mail: hisao@sustech.edu.cn).

This work was supported by National Natural Science Foundation of China (Grant No. 61876075), Guangdong Provincial Key Laboratory
(Grant No. 2020B121201001), the Program for Guangdong Introducing Innovative and Enterpreneurial Teams (Grant No.
2017ZT07X386), Shenzhen Science and Technology Program (Grant No. KQTD2016112514355531), the Program for University Key
Laboratory of Guangdong Province (Grant No. 2017KSYS008).

ABSTRACT In the field of evolutionary multi-objective optimization (EMO), most EMO algorithms try
to find a set of non-dominated solutions to approximate the Pareto front of a multi-objective optimization
problem. In these algorithms, a population is evolved from one generation to another, and the population of
the last generation is presented as the final result. However, recent studies reveal that some good solutions
can be discarded during the evolutionary process, whereas these solutions are non-dominated. One way to
solve this issue is to store all non-dominated solutions in an unbounded external archive (UEA) during the
evolutionary process and select a set of solutions from the UEA as the final result. A recently proposed
ND-Tree approach is very efficient for updating the UEA whenever a new solution is generated. However,
this may not be the most efficient strategy. In this paper, we propose a simple yet efficient update strategy
for the ND-Tree approach. The main idea is to reverse the order of solutions with respect to their generated
time when updating the UEA. The experimental results suggest that the ND-Tree approach assisted by the
proposed reverse strategy is much faster than the original ND-Tree approach in obtaining the final UEA.
The optimal update frequency for the proposed strategy is also investigated.

INDEX TERMS ND-Tree, Evolutionary multi-objective optimization, Unbounded external archive (UEA).

I. INTRODUCTION
Evolutionary multi-objective optimization (EMO) has been a
topic of interest for the last three decades. A multi-objective
optimization problem (MOP) usually has multiple objectives
that conflict with each other. Due to this conflicting nature,
there is no single optimal solution performing the best on all
objectives. Instead, a set of optimal solutions is usually ob-
tained to show the trade-off among the conflicting objectives.

Many multi-objective evolutionary algorithms (MOEAs)
have been proposed aiming to find a set of optimal so-
lutions in a single run. In general, these algorithms can
be classified into three categories: dominance-based algo-
rithms (e.g., NSGA-II [1], B-NSGA-III [2] and U-NSGA-III
[3]), decomposition-based algorithms (e.g., MOEA/D [4] and
MOEA/D-AWA [5]), and indicator-based algorithms (e.g.,
IBEA [6] and HypE [7]). Recently, some researchers view
multi-population-based algorithms and coevolution-based al-
gorithms as the fourth category, and many other MOEAs
for specific MOPs were proposed. For instance, Chen et al.

proposed a dynamic constrained MOEA (dCMOEA) to solve
dynamic constrained MOPs [8], Fu et al. developed a hybrid
MOEA (HMOEA) to solve hybrid flow shop scheduling
problems [9], and Fu et al. proposed a multi-objective brain
storm optimization (MOBSO) algorithm to solve stochastic
multi-objective distributed permutation flow shop scheduling
problems [10].

Most of these algorithms maintain a population (i.e., an in-
ternal archive) with a bounded size. However, as investigated
in [11], most of the algorithms fail to preserve the best set
of solutions in the bounded final population. Good solutions
can be discarded during the evolutionary process. To address
this issue, many researchers proposed to use an external
archive to assist the evolutionary process. For example, Deb
et al. proposed to select one of the parents from an external
archive [12], whereas both parents in most of the existing
algorithms are selected from the main population. In [13],
an external archive serves as a guider to guide the search
in the internal population by allocating the computational

VOLUME 4, 2020 1

nanya
文本框
© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Yang Nan et al.: Reverse Strategy for Non-dominated Selection

𝑓1

𝑓2

𝑖𝑑𝑒𝑎𝑙

𝑛𝑎𝑑𝑖𝑟

node: 𝐴

node: 𝑎1

node: 𝑎2

0

FIGURE 1. Illustration of the nodes of an ND-Tree. Node A (bounded by the
ideal and nadir points) is the parent node of child node a1 and child node a2.
The solution set of each child node has four solutions. The solution set of the
parent node A is the union of the solution sets of the child nodes a1 and a2.

resource for each subproblem. The subproblems that can
generate good solutions (i.e., solutions that can enter the
external archive) are more likely to be selected at the next
generation. The benefit of the bounded external archive used
in [12], [13] highly relies on the quality of the solutions in
the external archive. However, as reported in [14]–[16], the
performance of an external archive deteriorates when it is
bounded. Some algorithms proposed to use unbounded ex-
ternal archives (UEAs) to promote the evolutionary process
[14], [17]. However, maintaining the UEA is a very time-
consuming process since the size of the UEA can be very
large, especially in high-dimensional objective spaces.

To maintain the UEA during the evolutionary process effi-
ciently, several update approaches were proposed [14], [18].
The non-dominated tree (ND-Tree) approach is a recently
proposed update approach [18]. It partitions the objective
space into several hyper-rectangles according to the solutions
in the UEA. These hyper-rectangles are used to construct
an ND-Tree that can significantly reduce a vast number of
unnecessary solution comparisons during the UEA updating
process.

However, in some cases, we need the UEA after the
execution of an EMO algorithm (not during its execution)
as the final output of the algorithm [19]. As mentioned
before, many researchers focus on updating the UEA during
the evolutionary process, and all these approaches update
the UEA right after a new solution is generated. Intuitively,
this is not as effective since the data structures to store the
non-dominated solutions are reconstructed frequently. In this
paper, we propose a reverse strategy, which can be applied
to the ND-Tree approach to make it more efficient when
selecting the non-dominated solutions from all the examined
solutions at the end of the evolutionary process.

In this paper, we make the following two contributions:
• We propose a reverse strategy for the ND-Tree ap-

proach, which can significantly reduce its time cost
when it is used to select all non-dominated solutions
at the end of the evolutionary process. The ND-Tree

approach with the reverse strategy is called the ND-
Tree-Reverse approach.

• To obtain the non-dominated solutions from all the ex-
amined solutions, a straightforward method is to obtain
the UEA with the ND-Tree-Reverse approach at the
end of the evolutionary process. Another method is
to update the UEA by the ND-Tree-Reverse approach
every g generations (e.g., every 10 generations). We
investigate the optimal frequency of updating the UEA
during the evolutionary process using the ND-Tree-
Reverse approach.

The remainder of this paper is organized as follows. In
Section II, basic knowledge of the ND-Tree approach is
introduced. The reverse strategy is proposed in Section III.
In Section IV, experimental results are shown to validate the
effectiveness of our strategy. The optimal update frequency
is investigated in Section V. Finally, we conclude the paper
in Section VI.

II. ND-TREE APPROACH
The ND-Tree approach was initially proposed in [18]. In
this section, we briefly explain this approach since it is
the foundation of our proposed reverse strategy. The ND-
Tree approach uses a tree structure (ND-Tree) to store all
non-dominated solutions generated during the evolutionary
process. When a new solution is generated, the new solution
is first compared with all solutions in the ND-Tree. If the
new solution is dominated, it is simply rejected. Otherwise,
the new solution is inserted into the tree, and the solutions
that are dominated by the new solution are removed from the
ND-Tree.

The ND-Tree is constructed based on nodes. Each node
indicates a hyper-rectangle in the objective space. The hyper-
rectangle is specified by the ideal and nadir points of the
solutions in this node. The solutions in the hyper-rectangle
form the solution set (L) of this node. Each node has no more
than B (a predefined size) child nodes (branches). A node is
called a leaf node if it has no child node; otherwise, it is called
a branch node. If a node has no parent node, it is a root node.

In Figure 1, the four stars constitute the solution set L of
node a1 (a1.L), and the four points constitute the solution
set L of node a2 (a2.L). The child nodes (i.e., nodes a1
and a2) of node A are the hyper-rectangles included in the
hyper-rectangle of node A. The union of a1.L and a2.L is
the solution set L of node A (i.e., A.L).

A. BASIC CONCEPTS IN ND-TREE
Throughout this paper, the minimization of all objectives is
assumed. That is, the ideal and nadir points of the solution
set L are defined as follows:

ideali = min
f∈L

fi, i ∈ {1, ...,M},

nadiri = max
f∈L

fi, i ∈ {1, ...,M},
(1)

where ideali and nadiri are the i-th elements of the ideal and
nadir points, respectively, andM is the number of objectives.

2 VOLUME 4, 2020

Yang Nan et al.: Reverse Strategy for Non-dominated Selection

Algorithm 1: ND-Tree
input : S (a set of N examined solutions)
output: root (root of ND-Tree)
begin

1 initialize root with s1
2 for i ∈ {2, ..., N} do
3 is_dominated←− update(root, si)
4 if root is deleted then
5 initialize root with si
6 else if not is_dominated then
7 insert(root, si)

In Figure 1, the ideal and nadir points of node A are the
lower-left square and the upper-right square, respectively.

The main idea of the ND-Tree approach is to utilize the
tree structure and the following three properties to avoid a
massive number of unnecessary solution comparisons [18]:
• Property 1: If a new solution is dominated by the nadir

point of a node, it is dominated by all solutions in L of
the node. This property is straightforward because the
nadir point of the node is dominated by all solutions in
L of the node.

• Property 2: If a new solution dominates the ideal point
of a node, it dominates all solutions in L of the node.

• Property 3: If a new solution is incomparable to the
ideal and nadir points of a node, the new solution is
incomparable to all solutions in L of the node. For the
detailed proof, refer to [18].

B. DETAILS OF ND-TREE
The main process of the ND-Tree approach is shown in Al-
gorithm 1. The input is a solution set (S) storingN examined
solutions (i.e., s1, ..., sN). First, a new node root is initialized
with the first generated solution s1. That is, for node root,
its solution set (root.L), ideal point (root.ideal), and nadir
point (root.nadir) are initialized with s1. Then, node root
is updated with the other solutions (i.e., s2, ..., sN) one by
one. For the i-th solution si, if it is not dominated by any
solutions in the ND-Tree, si is inserted into the ND-Tree. It
is worth noting that if root is deleted by si, a new node root
is initialized with si.

The purposes of update (line 3 of Algorithm 1) are (1) to
indicate if a new solution (p) is dominated by any solutions in
a node (n) and (2) to delete the solutions that are dominated
by the solution p from n.L. In Algorithm 2, is_dominated
indicates whether the solution p is dominated by any solu-
tions in n.L. First, if the solution p is dominated by n.nadir,
is_dominated = True is returned (Property 1). If the
solution p dominates n.ideal, node n and its all descendant
nodes are deleted, and is_dominated = False is returned
(Property 2). If the solution p is not dominated by n.ideal
and p does not dominate n.nadir, is_dominated = False is
returned (Property 3).

Algorithm 2: update(n, p)
input : n (a node), p (a solution)
output: is_dominated (p is dominated or not)
begin

1 if n.nadir ≺ p then
2 is_dominated←− True

3 else if p ≺ n.ideal then
4 delete n and its all descendant nodes
5 is_dominated←− False

6 else if n.ideal ≺ p or p ≺ n.nadir then
7 is_dominated←− False

8 else
9 if n is a branch node then

10 for b ∈ n.branch do
11 is_dominated←− update(b, p)
12 if is_dominated then
13 break

14 else if n is a leaf node then
15 for q ∈ n.L do
16 if q ≺ p then
17 is_dominated←− True
18 break
19 else if p ≺ q then
20 is_dominated←− False
21 n.L ←− n.L \ {q}

If the above conditions are not met and node n is a
branch node, update is recursively performed for all child
nodes of node n (lines 10-13 of Algorithm 2). If the solu-
tion p is dominated by at least one child node of node n,
is_dominated = True is returned. If node n has only a child
node left after updating all child nodes of n with the solution
p, node n is replaced by this child node.

If node n is a leaf node, all solutions in n.L are compared
with the solution p one by one (lines 15-21 of Algorithm 2).
If p is dominated by any solutions in n.L, is_dominated =
True is returned. If the solution p is not dominated by any
solutions in n.L, the solutions in n.L dominated by p are
deleted. It is worth noting that if all solutions in n.L are
deleted, node n is also deleted.

If the new solution p is not dominated by any solutions
stored in the ND-Tree (i.e., is_dominated = False), p is in-
serted into the ND-Tree. In Algorithm 3, the inputs of insert
are a solution p and a node n. If node n is a branch node,
solution p is inserted into its nearest child node n′ of node
n (lines 2-9). In line 3, dist calculates the average distance
between the solution p and all solutions in n.branch[i].L. If
node n is a leaf node, solution p is added to n.L and the ideal
and nadir points of node n are updated with the solution p. If
the size of n.L is larger than a predefined size (C), node n is

VOLUME 4, 2020 3

Yang Nan et al.: Reverse Strategy for Non-dominated Selection

Algorithm 3: insert(n, p)
input : n (a node of ND-Tree), p (a candidate

solution)
begin

1 if n is a branch node then
2 min_index←− 1
3 min_dist←− dist(p, n.branch[1].L)
4 for i ∈ {2, ..., |n.branch|} do
5 cur_dist←− dist(p, n.branch[i].L)
6 if cur_dist < min_dist then
7 min_dist←− cur_dist
8 min_index←− i

9 insert(n.branch[min_index], p)

10 else if n is a leaf node then
11 n.L ←− n.L

⋃
{p}

12 update_ideal_nadir(n, p)
13 if |n.L| > C then
14 split(n)

split by split.
In Algorithm 4, to split a node n, the solution set of n is

first copied to a temporary solution set (TS). Then, the most
distant solution from the other solutions is removed from TS.
This removal is repeatedly performed B times, where B is a
predefined number indicating the maximum number of the
child nodes of a node. These B solutions removed from TS
are used to initialize B new child nodes (lines 2-12). After
that, each remaining solution in TS is added to the closest
child node (i.e., one of the newly generated nodes). Finally,
the ideal and nadir points of each child node are updated by
update_ideal_nadir (lines 13-23).

Algorithm 5 shows how the ideal and nadir points are
updated. Note that the two points of the ancestors of node
n will also be updated if any of the two points of node n
change.

The above processes show all the details of the ND-Tree
approach. The main idea of this approach is to utilize the tree
structure and the three properties mentioned in this section to
avoid a number of unnecessary comparisons when updating
the ND-Tree.

III. REVERSE STRATEGY FOR ND-TREE

The ND-Tree approach updates the UEA right after a new so-
lution is generated. However, in some cases, we can first store
all the solutions generated during the evolutionary process
and then update the UEA using all the stored solutions at the
end of the evolutionary process. In this section, we propose a
reverse strategy for the ND-Tree approach and elaborate how
our proposed strategy speeds up the ND-Tree approach.

Algorithm 4: split(n)
input : n (a node of ND-Tree)
begin

1 TS ←− n.L
2 for i ∈ {1, ..., B} do
3 max_index←− 1
4 max_dist←− dist(n.L[1], n.L)
5 for j ∈ {2, ..., |TS|} do
6 cur_dist←− dist(n.L[j], n.L)
7 if cur_dist > max_dist then
8 max_dist←− cur_dist
9 max_index←− j

10 initialize a node n′ with TS[max_index]
11 n.branch←− n.branch

⋃
n′

12 TS ←− TS \ {TS[max_index]}
13 for i ∈ {1, ..., |TS|} do
14 min_index←− 1
15 min_dist←− dist(TS[i], n.branch[1].L)
16 for j ∈ {2, ..., |n.branch|} do
17 cur_dist←− dist(TS[i], n.branch[j].L)
18 if cur_dist < min_dist then
19 min_dist←− cur_dist
20 min_index←− j

21 n′ ←− n.branch[min_index]
22 n′.L ←− n′.L

⋃
{TS[i]}

23 update_ideal_nadir(n′, TS[i])

A. REVERSE STRATEGY
Solutions generated at early generations are usually far from
the Pareto front [20], [21]. In Figure 2, red solutions (solu-
tions generated at the first generation) are far away from the
Pareto front. With the evolutionary process, the solution set
becomes increasingly closer to the Pareto front. The original
ND-Tree approach updates the UEA with solutions from the
first generation to the last generation (e.g., in Figure 2, the
red solutions are used to update the UEA first and the black
solutions are used to update the UEA last). Thus, the non-
dominated solutions stored in the ND-Tree first distribute
at the upper-right corner (i.e., the non-dominated solutions
of the red solution set in Figure 2). During the evolution-
ary process, the non-dominated solution set is gradually
updated and moves toward the lower-left corner (i.e., the
non-dominated solutions of the green, blue, and then black
solution set in Figure 2). We can clearly observe that, during
this process, the solutions stored in the ND-Tree are updated
too frequently. This is a significant drawback of the ND-tree
approach because reconstructing the ND-Tree frequently is a
very time-consuming process.

In the case of updating the UEA right after a new solution
is generated, we have to follow the generation order of the
solutions to update the ND-Tree. However, when we update
the ND-Tree after obtaining all the examined solutions, we

4 VOLUME 4, 2020

Yang Nan et al.: Reverse Strategy for Non-dominated Selection

Algorithm 5: update_ideal_nadir(n,p)
input : n (a node of ND-Tree), p (new candidate

solution)
begin

1 is_updated←−False
2 for i ∈ {1, ...,M} do
3 if p[i] < n.ideal[i] then
4 is_updated←−True
5 n.ideal[i]←− p[i]
6 else if p[i] > n.nadir[i] then
7 is_updated←−True
8 n.nadir[i]←− p[i]

9 if is_updated and n.parent exists then
10 update_ideal_nadir(n.parent, p)

do not have to follow the generation order of the solutions for
updating the ND-Tree. Instead, we can reverse the generation
order of the solutions and update the ND-Tree using the
reversed sequence of the solutions. In Algorithm 6, the last
generated solution (sN) is first used to initialize the ND-
Tree; then, the next solution (sN−1) is used to update the
ND-Tree, and so on. The potential benefit of reversing the
solution order for updating the ND-Tree is the reduction
of the frequency of reconstructing the ND-Tree. Since the
solutions in later generations are more likely to dominate
those in earlier generations, when we store the solutions of
the final population in the ND-Tree first, these solutions are
hard to be removed from the ND-Tree. Thus, we do not
have to reconstruct the ND-Tree frequently. For the ND-Tree-
Reverse approach, since the non-dominated solutions of all
the examined solutions (e.g., black solutions on the Pareto
front in Figure 2) are stored in the ND-Tree at the early stage
of the updating, a number of solutions at early generations
(e.g., green solutions in Figure 2) can be dominated by the
nadir point of node root of the ND-Tree. Therefore, those
solutions can be simply rejected during the ND-Tree updat-
ing, which significantly decreases the computation time.

B. COMPUTATIONAL COMPLEXITY
1) ND-Tree approach
Let the number of the child nodes (B) be 2, and the prob-
ability that both children need to be further processed (i.e.,
neither child meets the three properties mentioned in Sec-
tion II) be c1. The computational complexity of update is
Θ(N c1

1), where N1 is the number of solutions in the current
ND-Tree [18]. In practice, the probability c1 is smaller than
1, so the computational complexity of update is sublinear in
time with respect to N1.

When the number of the child nodes (B) is 2, the average-
case computational complexity of insert is Θ(logN1). The
computational complexity of update_ideal_nadir is the
same as that of insert since it goes up the tree starting

Algorithm 6: ND-Tree-Reverse
input : S (a set of N examined solutions)
output: root (root of ND-Tree)
begin

1 initialize root with sN
2 for i ∈ {N − 1, ..., 2} do
3 is_dominated←− update(root, si)
4 if root is deleted then
5 initialize root with si
6 else if not is_dominated then
7 insert(root, si)

from a leaf node, which is equivalent to going down the
tree. split has a constant time complexity since it depends
on the maximum size of a leaf node (C) and the number of
child nodes (B). Thus, the total computational complexity of
updating an ND-Tree is Θ(max {N c1

1 , logN1}).

2) ND-Tree-Reverse approach
The computational complexity of the ND-Tree-Reverse ap-
proach is the same as that of the ND-Tree approach. This
is because the code of the ND-Tree-Reverse approach is the
same as that of the ND-Tree approach since we only change
the order of the solutions to update the ND-Tree. However,
our reverse strategy can increase the probability that a newly
added solution is dominated by the nadir point of node
root. Thus, in the following toy example and Section IV, the
ND-Tree-Reverse approach is much faster than the ND-Tree
approach. It is worth noting that the obtained solution sets by
the ND-Tree approach and the ND-Tree-Reverse approach
are always the same. This is because both approaches find all
non-dominated solutions of the given dataset. In this paper,
we use the runtime to compare the performance of the two
approaches. The performance indicators, such as HV [22]
and IGD [23], are not used since the output solution sets by
the two approaches are the same.

C. A TOY EXAMPLE
The proposed strategy is very simple yet effective. In the re-
mainder of this section, we use a toy example to preliminarily
verify the superiority of the ND-Tree-Reverse approach. The
ND-Tree approach and the ND-Tree-Reverse approach are
compared on 21 artificial bi-objective datasets.

1) Artificial bi-objective datasets
An artificial bi-objective dataset S = {Sg|g = 1, ..., 200}
where Sg is a subset containing 200 solutions (i.e., Sg =
{s1g, s2g, ..., s200g }) at the g-th generation is generated as
follows. We first generate a solution (p = (p1, p2)), where
its first element (p1) is sampled from a normal distribution
with mean µ = 0 and standard deviation σ = 0.1, and
its second element (p2) is sampled from a uniform distribu-
tion over (−1/

√
2, 1/

√
2). That is, p1 ∼ N(0, 0.01) and

VOLUME 4, 2020 5

Yang Nan et al.: Reverse Strategy for Non-dominated Selection

FIGURE 2. An artificial dataset that contains all solutions generated in the first
200 generations. Solutions generated at each generation form a subset in this
artificial solution set (e.g., the red subset is generated at the first generation).
The red solid line denotes the Pareto front of this dataset.

p2 ∼ U(−1/
√

2), 1/
√

2). Then, we apply the following
transformation to rotate p anticlockwise to obtain p∗:

p∗ = p ·
[
cos θ − cos θ
sin θ cos θ

]
, (2)

where θ is a rotation degree, and it is set to π/4 here. We
iterate the above procedure to generate 200 rotated solutions.
The 200 rotated solutions form the initial subset So. The sub-
set Sg is obtained by applying the following transformation:

Sg = So + (200− g + 0.5), g = 1, 2, ..., 200. (3)

So far, a subset Sg has been obtained. All subsets (i.e.,
S1, S2, ..., S200) can be easily obtained by repeating the
above procedure with different values of g. The artificial bi-
objective dataset S is composed of the 200 subsets.

Figure 2 shows part of the solution sets in S. For example,
red points are solutions generated at the first generation (i.e.,
S1). It is worth noting that when we generate S200 (i.e., the
black solutions in Figure 2), So in (3) are generated only from
the positive part of the normal distribution (i.e., half-normal
distribution). This is to guarantee that the Pareto front of this
dataset S is a line with two ends (1,0) and (0, 1) (i.e., the red
line in Figure 2).

2) Experiments
We generate 21 artificial bi-objective datasets by 21 in-
dependent runs of the abovementioned dataset generation
procedure. The ND-Tree approach and the ND-Tree-Reverse
approach are compared on each artificial dataset. The two
parameters C and B in the ND-Tree approach are set as 20
and 6, respectively, as suggested in [18]. Figure 3 shows the
comparison of runtime (in milliseconds) of the ND-Tree ap-
proach and the ND-Tree-Reverse approach on the 21 artificial
datasets. We can observe that the ND-Tree-Reverse approach
is approximately seven times faster than the original ND-Tree
approach.

FIGURE 3. Comparison of runtime (in milliseconds) of the ND-Tree approach
and the ND-Tree-Reverse approach on the 21 artificial bi-objective datasets.

When all the examined solutions are stored, the ND-Tree-
Reverse approach is much faster than the original ND-Tree
approach. This is because the ND-Tree-Reverse approach can
avoid many unnecessary reconstruction operations. In most
cases, solutions generated in earlier generations are likely
to be dominated by the nadir point of node root. The ND-
Tree-Reverse approach simply rejects those solutions without
changing the ND-Tree structure. This toy example shows
that the time cost of the ND-Tree-Reverse approach is much
less than that of the original ND-Tree approach. In the next
section, we will use more realistic and complex datasets to
examine the effectiveness of the proposed reverse strategy.

IV. EXPERIMENTS
A. SETTINGS FOR GENERATING DATASETS
To obtain the datasets for computational experiments in
this paper, we run NSGA-II on four MOPs: multi-objective
knapsack problem (MOKP) [22], multi-point distance min-
imization problem (MPDMP) [24], PS1 and PS2 [25]. For
each problem, we obtain 21 datasets by 21 independent
runs. In each run, the generated solutions at each generation
are stored as a subset (e.g., S1). All the subsets generated
during the whole evolutionary process form a single dataset.
Different numbers of objectives are considered (i.e., M ∈
{2, 3, 5, 10}).

It is worth noting that the same datasets are used by
different approaches (i.e., the ND-Tree approach and the ND-
Tree-Reverse approach). Thus, the outputs of the approaches
are the same since the non-dominated solution sets of the
same datasets are identical. In this section, we only use the
runtime to evaluate their performance.

1) Multi-objective knapsack problem (MOKP)
The multi-objective knapsack problem (MOKP [22]) has
been used in many studies for evaluating EMO algorithms.
MOKP has two parameters: the number of items and the
number of knapsacks. The former is the dimension of the
decision space, and the latter is the number of objectives. In
this paper, the number of items is set to 250. The number of
knapsacks is 2, 3, 5, and 10.

6 VOLUME 4, 2020

Yang Nan et al.: Reverse Strategy for Non-dominated Selection

2) Multi-point distance minimization problem (MPDMP)
The multi-point distance minimization problem (MPDMP
[24]) has been used for visually examining the behavior of
EMO algorithms. In MPDMP [24], the dimension of the de-
cision space is set as two. There is a regularM -sided polygon
in the center of the decision space. In the decision space, the
distances between a solution and the vertexes of the polygon
are the objectives to be minimized. In the original MPDMP,
the randomly generated initial solutions are often very close
to or on the Pareto front since they distribute uniformly in the
two-dimensional decision space. This characteristic is very
rare in real-world problems [20], [21]. To address this issue,
we use a mapping approach to convert the two-dimensional
decision space to a high-dimensional decision space [26]. In
this way, the randomly generated initial solutions are not very
close to or on the Pareto front. In this paper, the dimension of
the decision space of MPDMP is set as 10.

3) PS1 and PS2
The other two problems are PS1 and PS2 [25]. Similar to
MPDMP, the PS problems are distance-based problems, and
the objectives of a solution are the distances between the
solution and the vertexes of the polygon in the decision space.
However, the polygon of the PS problems is an (M − 1)-
dimensional polygon rather than a two-dimensional M -sided
polygon. The difference between PS1 and PS2 is that PS1
is unconstrained and PS2 is constrained. In addition, for PS2,
the dimension of the Pareto set can be modified. In this paper,
the dimensions of the decision spaces of PS1 and PS2 are
both set to 30.

4) Non-dominated sorting genetic algorithm II (NSGA-II)
The non-dominated sorting genetic algorithm II (NSGA-II
[1]) is a popular MOEA based on the Pareto domination
relation in the evolutionary optimization community. NSGA-
II uses non-dominated sorting and density estimation to
guarantee the convergence and the diversity of solutions,
respectively. The non-dominated sorting is used as the main
fitness evaluation criterion to push the population of solu-
tions toward the Pareto front. The density estimation (i.e.,
crowding distance in [1]) is used as the secondary fitness
evaluation criterion to increase the diversity of solutions in
the population over the entire Pareto front.

To generate datasets by NSGA-II, the population size is set
to 200 and the maximum number of the function evaluations
is set to 40000. That is, each dataset has 200 subsets of so-
lutions (i.e., S1, S2, ..., S200), where Si denotes the solutions
generated in the i-th generation. The SBX crossover and the
polynomial mutation are used to generate the datasets for
MPDMP, PS1 and PS2, where each solution is represented
by a real number vector (i.e., read number coding). Following
the practice in [4], [5], the crossover probability and mutation
probability are set to 1 and 1/D, respectively, where D is the
dimension of the decision space (i.e., the number of decision
variables). The distribution indices of both operators are set
to 20. For MOKP where each solution is represented by a

binary string (i.e., binary coding), the one-point crossover
with the probability 1 and the bit-flip mutation with the
mutation probability 1/D are used to generate new solutions.
The same greedy repair method as in [21], [22] is used to
handle infeasible solutions. It is worth noting that all the
datasets are obtained from PlatEMO [27].

B. SETTINGS FOR ND-TREE
There are two parameters in the ND-Tree: the maximum
size of a leaf node (C) and the number of child nodes (B).
In the experiments, different values of B are considered
(i.e., B ∈ {6, 10, 14, 18}), and different values of C are
considered (i.e., C ∈ {10, 15, 20, 25}).

We use a slightly different implementation of the ND-Tree
approach in [18]. The only difference lies in the method of
handling 2-objective cases. In the implementation of the ND-
Tree approach provided by [18], when a new 2-objective
solution is inserted into a leaf node, the new solution is
compared with the solutions in the leaf node. However, this
process is redundant since it has already been performed
when the ND-Tree is updated with the new solution, as
described in Section II. In this study, to perform a fair
comparison, this redundant process is removed. For three or
more objectives, our implementation is exactly the same as
in [18].

All experiments are performed on a machine with 32
Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20 GHz running
Ubuntu 16.4.

C. COMPARISON OF THE RESULTS
In this subsection, we compare the runtime between the
ND-Tree approach and the ND-Tree-Reverse approach on
the datasets generated by NSGA-II on the above four prob-
lems. Table 1 shows the runtime (in microseconds) of the
ND-Tree approach and the ND-Tree-Reverse approach with
C ∈ {10, 15, 20, 25} and B = 6. In Table 1, the ND-Tree
approach and the ND-Tree-Reverse approach are referred
to as NT and NTR, respectively. The ND-Tree approach
with C is denoted as NT(C). Similarly, the ND-Tree-Reverse
approach with C is denoted as NTR(C). Table 2 shows the
runtime (in microseconds) of the ND-Tree approach and the
ND-Tree-Reverse approach with B ∈ {6, 10, 14, 18} and
C = 20. Similar to Table 1, the ND-Tree approach and ND-
Tree-Reverse approach with B are denoted as NT(B) and
NTR(B), respectively. From Table 1 and Table 2, we can
conclude that the ND-Tree-Reverse approach is much faster
than the ND-Tree approach in all cases. For example, when
C = 10, B = 6, and M = 2, the ND-Tree-Reverse approach
is more than two times faster than the ND-Tree approach.

1) Relative runtime
To show the results in Table 1 more clearly, in this subsection,
we define the relative runtime as the runtime of the ND-
Tree-Reverse approach divided by the runtime of the ND-
Tree approach. For example, if the relative runtime is 0.5, the
runtime of the ND-Tree-Reverse approach is half that of the

VOLUME 4, 2020 7

Yang Nan et al.: Reverse Strategy for Non-dominated Selection

TABLE 1. Runtime (in microseconds) of the ND-Tree approach (NT) and the ND-Tree-Reverse approach (NTR) on the datasets of MOKP, MPDMP, PS1, and PS2.
Four different values of C are considered (i.e., 10, 15, 20, and 25) and B = 6. NT(C) and NTR(C) refer to the ND-Tree approach with C and the ND-Tree-Reverse
approach with C, respectively. The best results are shaded. The three symbols +, −, and ≈ denote that the NTR is significantly faster than, slower than, and
similar to NT, respectively.

Problem M D NT(10) NTR(10) NT(15) NTR(15) NT(20) NTR(20) NT(25) NTR(25)

MOKP

2 250 1.9002e+4 8.9996e+3 + 1.2470e+4 8.3010e+3 + 1.0551e+4 8.6120e+3 + 1.0511e+4 8.7804e+3 +

3 250 6.3344e+4 2.2174e+4 + 4.8746e+4 2.0716e+4 + 3.9857e+4 2.0759e+4 + 3.7490e+4 2.1060e+4 +

5 250 2.1935e+5 1.0258e+5 + 1.8680e+5 9.6708e+4 + 1.8203e+5 9.5769e+4 + 1.6616e+5 9.2818e+4 +

10 250 1.1664e+6 6.3084e+5 + 1.0423e+6 5.9112e+5 + 1.0035e+6 5.9726e+5 + 9.5705e+5 5.8763e+5 +

MPDMP

2 10 1.1866e+4 5.0122e+3 + 9.7887e+3 4.9204e+3 + 9.3640e+3 4.9295e+3 + 8.9476e+3 4.9280e+3 +

3 10 2.7196e+4 1.0527e+4 + 2.2789e+4 1.0375e+4 + 2.0848e+4 1.0245e+4 + 1.9722e+4 1.0218e+4 +

5 10 3.6136e+4 1.6113e+4 + 3.1437e+4 1.5938e+4 + 2.9230e+4 1.6220e+4 + 2.7932e+4 1.5917e+4 +

10 10 5.7476e+4 2.3157e+4 + 4.5101e+4 2.1651e+4 + 4.1549e+4 2.1933e+4 + 3.9573e+4 2.2121e+4 +

PS1

2 30 5.6908e+3 2.9329e+3 + 4.8182e+3 2.8170e+3 + 4.7301e+3 2.8335e+3 + 4.5155e+3 2.8385e+3 +

3 30 1.5731e+4 6.2913e+3 + 1.1961e+4 5.5731e+3 + 1.0560e+4 5.5311e+3 + 1.0179e+4 5.5885e+3 +

5 30 4.2317e+4 1.5371e+4 + 3.3415e+4 1.4602e+4 + 2.9820e+4 1.4525e+4 + 2.8065e+4 1.4596e+4 +

10 30 1.2534e+5 4.1492e+4 + 1.0034e+5 3.8273e+4 + 9.0863e+4 3.8325e+4 + 8.7784e+4 3.9374e+4 +

PS2

2 30 4.5778e+3 2.5836e+3 + 3.8136e+3 2.5366e+3 + 3.7453e+3 2.5250e+3 + 3.6521e+3 2.5803e+3 +

3 30 1.1072e+4 4.6837e+3 + 8.8050e+3 4.4263e+3 + 8.1184e+3 4.4557e+3 + 7.7475e+3 4.3978e+3 +

5 30 3.3116e+4 1.1436e+4 + 2.7193e+4 1.1194e+4 + 2.4332e+4 1.1117e+4 + 2.3153e+4 1.1225e+4 +

10 30 1.1155e+5 3.5527e+4 + 9.4342e+4 3.3771e+4 + 8.5717e+4 3.3326e+4 + 8.3521e+4 3.3295e+4 +

+/− / ≈ 16/0/0 16/0/0 16/0/0 16/0/0

TABLE 2. Runtime (in microseconds) of the ND-Tree approach (NT) and the ND-Tree-Reverse approach (NTR) on the datasets of MOKP, MPDMP, PS1, and PS2.
Four different values of B are considered (i.e., 6, 10, 14, and 18) and C = 20.

Problem M D NT(6) NTR(6) NT(10) NTR(10) NT(14) NTR(14) NT(18) NTR(18)

MOKP

2 250 1.0551e+4 8.6120e+3 + 1.0451e+4 8.5581e+3 + 1.0746e+4 8.6389e+3 + 1.0730e+4 8.8947e+3 +

3 250 3.9857e+4 2.0759e+4 + 4.0181e+4 2.1058e+4 + 4.0116e+4 2.0004e+4 + 4.2334e+4 2.0281e+4 +

5 250 1.8203e+5 9.5769e+4 + 1.7426e+5 9.4028e+4 + 1.8114e+5 9.3628e+4 + 1.8180e+5 9.8489e+4 +

10 250 1.0035e+6 5.9726e+5 + 1.0279e+6 6.1915e+5 + 1.0083e+6 6.5270e+5 + 1.1116e+6 6.8001e+5 +

MPDMP

2 10 9.3640e+3 4.9295e+3 + 9.2861e+3 5.0585e+3 + 9.3030e+3 4.9399e+3 + 9.6074e+3 5.2319e+3 +

3 10 2.0848e+4 1.0245e+4 + 2.1004e+4 1.0480e+4 + 2.1645e+4 1.1065e+4 + 2.2390e+4 1.1653e+4 +

5 10 2.9230e+4 1.6220e+4 + 2.9484e+4 1.6086e+4 + 3.0077e+4 1.7129e+4 + 3.1029e+4 1.8137e+4 +

10 10 4.1549e+4 2.1933e+4 + 4.2233e+4 2.2498e+4 + 4.2884e+4 2.3794e+4 + 4.3927e+4 2.5313e+4 +

PS1

2 30 4.7301e+3 2.8335e+3 + 4.6253e+3 2.8074e+3 + 4.6541e+3 2.8643e+3 + 4.7088e+3 2.9074e+3 +

3 30 1.0560e+4 5.5311e+3 + 1.0683e+4 5.4045e+3 + 1.0831e+4 5.5941e+3 + 1.1036e+4 5.5802e+3 +

5 30 2.9820e+4 1.4525e+4 + 2.9333e+4 1.4151e+4 + 3.0047e+4 1.4699e+4 + 3.0483e+4 1.5245e+4 +

10 30 9.0863e+4 3.8325e+4 + 9.1078e+4 3.7051e+4 + 8.9858e+4 3.7083e+4 + 9.2019e+4 3.8141e+4 +

PS2

2 30 3.7453e+3 2.5250e+3 + 3.6771e+3 2.5345e+3 + 3.7225e+3 2.5490e+3 + 3.7502e+3 2.5633e+3 +

3 30 8.1184e+3 4.4557e+3 + 8.0886e+3 4.3797e+3 + 8.3292e+3 4.3667e+3 + 8.4683e+3 4.4433e+3 +

5 30 2.4332e+4 1.1117e+4 + 2.4422e+4 1.0717e+4 + 2.4968e+4 1.1302e+4 + 2.5162e+4 1.1286e+4 +

10 30 8.5717e+4 3.3326e+4 + 8.4188e+4 3.1243e+4 + 8.3321e+4 3.1453e+4 + 8.4333e+4 3.1611e+4 +

+/− / ≈ 16/0/0 16/0/0 16/0/0 16/0/0

ND-Tree approach. Thus, the smaller the relative runtime is,
the better the ND-Tree-Reverse approach performs relative to
the ND-Tree approach.

2) Effects of different values of C
Figure 4 (a) shows the relative runtime of the ND-Tree-
Reverse approach on MOKP with C ∈ {10, 15, 20, 25}
and B = 6. When M = 2 and C = 10, the relative
runtime for MOKP is approximately 0.5. The relative runtime
gradually increases with the increase in C. For example,
when M = 2, the runtime of the ND-Tree-Reverse approach
is approximately 0.5 times smaller than that of the ND-Tree

approach with C = 10. However, with C = 25, the runtime
of the ND-Tree-Reverse approach is approximately 0.8 times
smaller than that of the ND-Tree approach. Although the
relative runtime with M > 2 increases with the increase in
C, their growth is smaller than that with M = 2. In general,
the relative runtime for MOKP is approximately 0.5. Figure
4 (b)-(d) show the relative runtimes on MPDMP, PS1, and
PS2, respectively. Similarly, the relative runtime for the three
MOPs increases with the increase in C, and their relative
runtime is approximately 0.5.

8 VOLUME 4, 2020

Yang Nan et al.: Reverse Strategy for Non-dominated Selection

(a) (b) (c) (d)

FIGURE 4. Relative runtimes over different values of C on the datasets of (a) MOKP, (b) MPDMP, (c) PS1, and (d) PS2 with M ∈ {2, 3, 5, 10}.

(a) (b) (c) (d)

FIGURE 5. Relative runtimes over different values of B on the datasets of (a) MOKP, (b) MPDMP, (c) PS1, and (d) PS2 with M ∈ {2, 3, 5, 10}.

(a) (b)

FIGURE 6. Runtime (in log scale) of the ND-Tree approach (NT) and the
ND-Tree-Reverse approach (NTR) on the datasets of MOKP for (a) different
values of C and (b) different values of B. NT-Mm and NTR-Mm denote the
ND-Tree approach and the ND-Tree-Reverse approach when the number of
objectives M is m, respectively.

3) Effects of different values of B

Figure 5 shows the relative runtime of the ND-Tree-Reverse
approach on MOKP, MPDMP, PS1 and PS2 when C = 20
and B ∈ {6, 10, 14, 18}. In all cases, the relative runtime
has almost no change with the increase in the parameter B.
This observation shows that the performance of the proposed
strategy is not sensitive to the parameter B.

4) Discussion

As discussed in Section III, split in the ND-Tree approach
has a constant time complexity since it depends on C and B.
When C and B are set to small values, split is executed fre-
quently, but the time cost of each execution is very low. When
C and B are very large, split is executed less frequently, but
the time cost of each execution is large. Thus, the time cost of
split compensates the frequency of split to keep the runtime
of the two approaches less sensitive to C and B. This is also
consistent with the results from [18].

Figure 6 (a) shows the runtime (in log scale) of the ND-
Tree approach and the ND-Tree-Reverse approach for dif-
ferent values of C on MOKP with B = 6. The ND-Tree
approach with M = m is denoted as NT-Mm in Figure 5.
Similarly, the ND-Tree-Reverse approach with M = m is
denoted as NTR-Mm. As shown in Figure 6 (a), the runtime
of the ND-Tree approach and the ND-Tree-Reverse approach
for MOKP has no significant change with the increase in C.
However, compared to the ND-Tree-Reverse approach, when
C increases, the runtime of the ND-Tree approach decreases
slightly. Thus, the relative runtime of the ND-Tree-Reverse
approach increases with the increase inC. In other words, the
ND-Tree-Reverse approach is less sensitive to the value of
C compared to the ND-Tree approach. The two approaches
show results similar to those of the other three problems.

Figure 6 (b) shows the runtime (in log scale) of the ND-

VOLUME 4, 2020 9

Yang Nan et al.: Reverse Strategy for Non-dominated Selection

TABLE 3. Runtime (in microseconds) of the seven update approaches on the datasets generated by NSGA-II on MOKP, MPDMP, PS1, and PS2 with
M ∈ {2, 3, 5, 10} over 21 independent runs, where C = 20 and B = 6. NT denotes the ND-Tree approach, NTR denotes the ND-Tree-Reverse approach, and
the NTRg denotes the ND-Tree-Reverse approach for updating the non-dominated tree every g generations. The best results are shaded. The three symbols +, −,
and ≈ denote that NTRg is significantly faster than, slower than, and similar to NT, respectively.

Problem M D NT NTR5 NTR10 NTR20 NTR50 NTR100 NTR

MOKP

2 250 1.0551e+4 1.0582e+4 ≈ 1.0318e+4 ≈ 9.6887e+3 + 8.9110e+3 + 8.7445e+3 + 8.6120e+3 +

3 250 3.9857e+4 3.8606e+4 ≈ 3.6100e+4 + 3.2123e+4 + 2.5611e+4 + 2.1483e+4 + 2.0759e+4 +

5 250 1.8203e+5 1.6640e+5 + 1.6205e+5 + 1.4911e+5 + 1.2703e+5 + 1.1036e+5 + 9.5769e+4 +

10 250 1.0035e+6 9.5866e+5 ≈ 9.5937e+5 ≈ 9.0812e+5 + 7.7766e+5 + 6.9964e+5 + 5.9726e+5 +

MPDMP

2 10 9.3640e+3 8.1043e+3 + 7.1250e+3 + 6.3194e+3 + 5.4740e+3 + 4.9742e+3 + 4.9295e+3 +

3 10 2.0848e+4 1.8699e+4 + 1.6857e+4 + 1.4911e+4 + 1.2615e+4 + 1.0899e+4 + 1.0245e+4 +

5 10 2.9230e+4 2.6690e+4 ≈ 2.4229e+4 + 2.1513e+4 + 1.8165e+4 + 1.6757e+4 + 1.6220e+4 +

10 10 4.1549e+4 3.8244e+4 + 3.4563e+4 + 3.0230e+4 + 2.5253e+4 + 2.3215e+4 + 2.1933e+4 +

PS1

2 30 4.7301e+3 4.1393e+3 + 3.7302e+3 + 3.3757e+3 + 3.0137e+3 + 2.8532e+3 + 2.8335e+3 +

3 30 1.0560e+4 9.1438e+3 + 8.0517e+3 + 7.1481e+3 + 6.2994e+3 + 5.5673e+3 + 5.5311e+3 +

5 30 2.9820e+4 2.6301e+4 + 2.3378e+4 + 1.9398e+4 + 1.5816e+4 + 1.4591e+4 + 1.4525e+4 +

10 30 9.0863e+4 8.0584e+4 + 7.0924e+4 + 6.0635e+4 + 4.5906e+4 + 3.8632e+4 + 3.8325e+4 +

PS2

2 30 3.7453e+3 3.2827e+3 + 3.0005e+3 + 2.7685e+3 + 2.6420e+3 + 2.5536e+3 + 2.5250e+3 +

3 30 8.1184e+3 6.9984e+3 + 6.2407e+3 + 5.3938e+3 + 4.9126e+3 + 4.5034e+3 + 4.4557e+3 +

5 30 2.4332e+4 2.1380e+4 + 1.8464e+4 + 1.5693e+4 + 1.2663e+4 + 1.1213e+4 + 1.1117e+4 +

10 30 8.5717e+4 7.7782e+4 + 6.7664e+4 + 5.3119e+4 + 4.2655e+4 + 3.3682e+4 + 3.3326e+4 +

+/− / ≈ 12/0/4 14/0/2 16/0/0 16/0/0 16/0/0 16/0/0

Tree approach and the ND-Tree-Reverse approach for differ-
ent values of B on MOKP with C = 20. The runtime of the
ND-Tree approach and the ND-Tree-Reverse approach for
MOKP almost remains constant with the increase in B. This
is why the relative runtime is not sensitive to the parameter
B.

V. INVESTIGATION OF OPTIMAL FREQUENCY
To obtain the non-dominated solutions from all the exam-
ined solutions, there are two strategies for updating the
ND-Tree. That is, the ND-Tree approach updates the ND-
Tree with the normal order (i.e., {S1, S2, ..., S200}), and
the ND-Tree-Reverse approach updates the ND-Tree with
the reverse order (i.e., {S200, S199, ..., S1}), where Sg is
a subset of solutions generated at the g-th generation. In
this section, we investigate the effect of the update fre-
quency on the performance of the ND-Tree-Reverse ap-
proach. That is, the ND-Tree-Reverse approach is applied
every g generations, where g ∈ {5, 10, 20, 50, 100}. For
instance, if the ND-Tree is updated every 100 generations,
the solutions used to update the ND-Tree are in the order of
{{S100, S99, ..., S1}, {S200, S199, ..., S101}}. Table 3 shows
the runtime (in microseconds) of the ND-Tree approach, the
ND-Tree-Reverse approach, and the ND-Tree-Reverse ap-
proach for updating the ND-Tree every g generations, where
g ∈ {5, 10, 20, 50, 100}. Because the results are similar for
different values of C and B, we only show the results with
C = 20 and B = 6 in Table 3. The original ND-Tree
approach is denoted as NT, the ND-Tree-Reverse approach
for updating the ND-Tree every g generations is denoted
as NTRg, and the ND-Tree-Reverse approach for updating
the ND-Tree once at the end of the evolutionary process
is denoted as NTR. Clearly, for all instances, the ND-Tree-

Reverse approach is the optimal approach. That is, updating
the ND-Tree once with the reverse strategy at the end of the
evolutionary process is suggested.

To show the results more clearly, Figure 7 shows the
relative runtime of the six update approaches (i.e., NTR5,
NTR10, NTR20, NTR50, NTR100, and NTR) for the four
MOPs (i.e., MOKP, MPDMP, PS1, and PS2). Similar to the
definition of the relative runtime in Section IV, the relative
runtime of an approach is the runtime of the approach di-
vided by the runtime of the ND-Tree approach, which can
be viewed as NTR1 since it updates the ND-Tree every
generation. As shown in Figure 7, with the decrease in the
update frequency (i.e., the increase in g), the relative runtime
of the update approach also decreases. For instance, in Figure
7 (a), whenM = 10, the relative runtime of MOKP decreases
from 1 to 0.6 with the decrease in the update frequency.
This is because when we update the ND-Tree with a low
frequency, the solutions inserted into the ND-Tree earlier are
less likely to be replaced by later solutions.

Although the experimental results suggest utilizing the
ND-Tree-Reverse approach to obtain the non-dominated so-
lutions once at the end of the evolutionary process, the
ND-Tree-Reverse approach with a certain frequency is an
excellent approach when we need to use the UEA during the
evolutionary process. In this situation, the ND-Tree-Reverse
approach with a certain frequency is a suggested approach
instead of the original ND-Tree approach.

VI. CONCLUSION
In this paper, we proposed a simple yet effective strategy to
enhance the ND-Tree approach to obtain the non-dominated
solutions at the end of the evolutionary process. Experimental
results showed that the ND-Tree approach with the reverse

10 VOLUME 4, 2020

Yang Nan et al.: Reverse Strategy for Non-dominated Selection

(a) (b) (c) (d)

FIGURE 7. Relative runtimes over different values of g on the datasets of (a) MOKP, (b) MPDMP, (c) PS1, and (d)PS2 with M ∈ {2, 3, 5, 10}.

strategy is much faster than the ND-Tree approach on MOKP,
MPDMP, PS1, and PS2 with up to 10 objectives. We also
investigated the effect of the frequency of updating the UEA
on the performance of the reverse strategy. The experimental
results suggested that the most efficient way is to update
the UEA only once at the end of the evolutionary process.
Moreover, with the decrease in the update frequency, the
runtime of the ND-Tree-Reverse approach also decreases.

In the future, we may need to examine the performance
of various approaches (including ND-Tree and ND-Tree-
Reverse) on very large datasets. In our computational exper-
iments in this paper, the termination condition was specified
as 40,000 (200 generations of the population with 200 so-
lutions). This means that the total number of examined so-
lutions is 40,000. The advantages of the proposed ND-Tree-
Reverse approach can be more clearly shown by difficult test
problems. This is because these problems require a greater
computational load (e.g., 10,000 generations of the popula-
tion with 1000 solutions) for initial solutions that are far away
from the Pareto front. It is also an interesting research topic
to examine their performance on datasets where almost all
solutions are non-dominated with each other.

REFERENCES
[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist

multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[2] H. Seada, M. Abouhawwash, and K. Deb, “Multi-phase balance of diver-
sity and convergence in multiobjective optimization,” IEEE Trans. Evol.
Comput., vol. 23, no. 3, pp. 503–513, Jun. 2019.

[3] H. Seada and K. Deb, “U-NSGA-III: A unified evolutionary optimization
procedure for single, multiple, and many objectives: Proof-of-principle
results,” in Proc. Evol. Multi-Criter. Optim., Guimarães, Portugal, Mar.
2015, pp. 34–49.

[4] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6, pp.
712–731, Dec. 2007.

[5] Y. Qi, X. Ma, F. Liu, L. Jiao, J. Sun, and J. Wu, “MOEA/D with adaptive
weight adjustment,” Evol. Comput., vol. 22, no. 2, pp. 231–264, Jun. 2014.

[6] E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective
search,” in Proc. Int. Conf. Parallel Prob. Solv. Nat., Birmingham, United
Kingdom, Sep. 2004, pp. 832–842.

[7] J. Bader and E. Zitzler, “HypE: An algorithm for fast hypervolume-based
many-objective optimization,” Evol. Comput., vol. 19, no. 1, pp. 45–76,
Mar. 2011.

[8] Q. Chen, J. Ding, S. Yang, and T. Chai, “A novel evolutionary algorithm for
dynamic constrained multiobjective optimization problems,” IEEE Trans.
Evol. Comput., (Early Access).

[9] Y. Fu, M. Zhou, X. Guo, and L. Qi, “Scheduling dual-objective stochastic
hybrid flow shop with deteriorating jobs via bi-population evolutionary
algorithm,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, (Early
Access).

[10] Y. Fu, G. Tian, A. M. Fathollahi-Fard, A. Ahmadi, and C. Zhang, “Stochas-
tic multi-objective modelling and optimization of an energy-conscious dis-
tributed permutation flow shop scheduling problem with the total tardiness
constraint,” J. Cleaner Prod., vol. 226, pp. 515–525, Jul. 2019.

[11] M. Li and X. Yao, “An empirical investigation of the optimality and
monotonicity properties of multiobjective archiving methods,” in Proc.
Evol. Multi-Criter. Optim., East Lansing, MI, USA, Mar. 2019, pp. 15–26.

[12] K. Deb, M. Mohan, and S. Mishra, “Evaluating the ε-domination based
multi-objective evolutionary algorithm for a quick computation of Pareto-
optimal solutions,” Evol. Comput., vol. 13, no. 4, pp. 501–525, Dec. 2005.

[13] X. Cai, Y. Li, Z. Fan, and Q. Zhang, “An external archive guided multiob-
jective evolutionary algorithm based on decomposition for combinatorial
optimization,” IEEE Trans. Evol. Comput., vol. 19, no. 4, pp. 508–523,
Aug. 2015.

[14] J. E. Fieldsend, R. M. Everson, and S. Singh, “Using unconstrained elite
archives for multiobjective optimization,” IEEE Trans. Evol. Comput.,
vol. 7, no. 3, pp. 305–323, Jun. 2003.

[15] H. G. de Medeiros, E. F. G. Goldbarg, and M. C. Goldbarg, “Investigation
of archiving techniques for evolutionary multi-objective optimizers,” Re-
vista de Informática Teórica e Aplicada., vol. 25, no. 4, pp. 11–27, Nov.
2018.

[16] R. Tanabe and H. Ishibuchi, “Non-elitist evolutionary multi-objective
optimizers revisited,” in Proc. Conf. Genet. Evol. Comput., Prague Czech
Republic, Jul. 2019, pp. 612–619.

[17] G. T. Parks and I. Miller, “Selective breeding in a multiobjective genetic
algorithm,” in Proc. Int. Conf. Parallel Prob. Solv. Nat., Amsterdam, The
Netherlands, Sep. 1998, pp. 250–259.

[18] A. Jaszkiewicz and T. Lust, “ND-Tree-based update: A fast algorithm for
the dynamic nondominance problem,” IEEE Trans. Evol. Comput., vol. 22,
no. 5, pp. 778–791, Oct. 2018.

[19] R. Tanabe, H. Ishibuchi, and A. Oyama, “Benchmarking multi-and many-
objective evolutionary algorithms under two optimization scenarios,”
IEEE Access., vol. 5, pp. 19 597–19 619, Sep. 2017.

[20] H. Ishibuchi, R. Imada, Y. Setoguchi, and Y. Nojima, “Performance
comparison of NSGA-II and NSGA-III on various many-objective test
problems,” in Proc. IEEE Congr. Evol. Comput., Vancouver, BC, Canada,
Jul. 2016, pp. 3045–3052.

[21] H. Ishibuchi, N. Akedo, and Y. Nojima, “Behavior of multiobjective
evolutionary algorithms on many-objective knapsack problems,” IEEE
Trans. Evol. Comput., vol. 19, no. 2, pp. 264–283, Apr. 2015.

[22] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A com-
parative case study and the strength Pareto approach,” IEEE Trans. Evol.
Comput., vol. 3, no. 4, pp. 257–271, Nov. 1999.

[23] P. A. Bosman and D. Thierens, “The balance between proximity and
diversity in multiobjective evolutionary algorithms,” IEEE Trans. Evol.
Comput., vol. 7, no. 2, pp. 174–188, Apr. 2003.

[24] M. Köppen and K. Yoshida, “Substitute distance assignments in NSGA-II
for handling many-objective optimization problems,” in Proc. Evol. Multi-
Criter. Optim., Matsushima, Japan, Mar. 2007, pp. 727–741.

[25] O. Schutze, A. Lara, and C. A. C. Coello, “On the influence of the number
of objectives on the hardness of a multiobjective optimization problem,”
IEEE Trans. Evol. Comput., vol. 15, no. 4, pp. 444–455, Aug. 2011.

VOLUME 4, 2020 11

Yang Nan et al.: Reverse Strategy for Non-dominated Selection

[26] H. Ishibuchi, Y. Peng, and K. Shang, “A scalable multimodal multiobjec-
tive test problem,” in Proc. IEEE Congr. Evol. Comput., Wellington, New
Zealand, Jun. 2019, pp. 310–317.

[27] Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “PlatEMO: A MATLAB plat-
form for evolutionary multi-objective optimization,” IEEE Computational
Intelligence Magazine, vol. 12, no. 4, pp. 73–87, Nov. 2017.

12 VOLUME 4, 2020

