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Abstract. This paper introduces a novel solution generation strategy
for MOEA/D. MOEA/D decomposes a multi/many-objective optimiza-
tion problem into several single-objective sub-problems using a set of
weight vectors and a scalarizing function. When a better solution is gen-
erated for one sub-problem, it is likely that a further better solution will
appear in the improving direction. Examination of such a promising so-
lution may improve the convergence speed of MOEA/D. Our idea is to
use the improved directions in the current and previous populations to
generate new solutions in addition to the standard genetic operators. To
assess the usefulness of the proposed idea, we integrate it into MOEA/D-
PBI and use a distance minimization problem to visually examine its
behavior. Furthermore, the proposed idea is evaluated on some large-
scale multi-objective optimization problems. It is demonstrated that the
proposed idea drastically improves the convergence ability of MOEA/D.

Keywords: Evolutionary multi-objective optimization · Large-scale multi-
objective optimization · MOEA/D · solution generation strategy.

1 Introduction

Many real-world applications involve multi-objective optimization problems that
have con�icting objectives [1]. Without loss of generality, multi-objective opti-
mization problems can be represented as follows:

Minimize f (x ) = (f1(x ), f2(x ), ..., fm(x ))T ,

subject to x ∈ Ω
(1)

where x = (x 1,x 2, ...,x d)
T is a d -dimensional vector of decision variables, Ω

is the feasible region, and fi(x ) is the i -th objective to be minimized (i =
1, 2, . . . ,m). Since the objectives are con�icting with each other, there is no solu-
tion that can optimize all objectives simultaneously. In multi-objective optimiza-
tion, the �nal goal is to �nd a set of Pareto optimal (PO) solutions. Population-
based approaches are useful for discovering a set of well-distributed and well-
converged solutions [1, 2], and evolutionary multi-objective optimization (EMO)
is one of the e�ective approaches.
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MOEA/D [3] is one of the most popular decomposition-based EMO algo-
rithms. MOEA/D uses a set of weight vectorsW = (w1,w2, . . . ,w |P |)

T (where
|P | is the population size) and a scalarizing function to decompose a multi-
objective optimization problem into a set of single-objective sub-problems. Each
weight vector w i = (w i1 ,w i2 , . . . ,w im)T corresponds to a sub-problem. For a
given sub-problem, the scalarizing function is used to calculate the �tness value
of a solution. Each weight vector w i (i -th weight vector, i = 1, 2, ..., |P |) has a
current solution x i

Current. When an o�spring solution x i
New is better than the

current solution x i
Current, x i

Current is replaced with x i
New. Let us denote the

neighborhood of w i by Si and its size by |Si|. In each generation, the current so-
lution x i

Current is compared with |Si| o�spring solutions (one by one) generated
in the neighborhood Si. Thus, the current solution can be updated |Si| times
in each generation. The current solution is not updated if there are no better
solutions than the current solution.

In MOEA/D, when a better solution is generated for one sub-problem, it
is likely that a further better solution will appear in the improving direction.
Examination of such a promising solution may improve the convergence speed
of MOEA/D. Based on this idea, we use the solutions in the current and pre-
vious generations to generate improving directions for sub-problem. By using
the improving directions, promising solutions can be generated and used for
accelerating the convergence speed of MOEA/D.

The idea of using the information obtained from the current and previous
generations to generate new solutions is not entirely new. In the literature, many
studies focus on online innovization approaches [4�10]. Online innovization ap-
proaches attempt to learn from the current and previous generations. By ex-
tracting the patterns or relationships among variables in the decision space,
online innovization approaches can accelerate the convergence speed of EMO
algorithms. Mittal et al. [4] proposed a learning-based innovized progress opera-
tor for EMO algorithms. It uses a machine learning (ML) model to capture the
patterns of the variables in the decision space and uses the learned ML model
to improve o�spring solutions. Ghosh et al. [5] proposed a method that com-
bines user-supplied and machine-learnable patterns and rules to accelerate the
convergence speed of multi-objective optimization algorithms. Mittal et al. [6]
proposed an innovized repair operator which uses an ML model to repair the
o�spring solutions.

In this paper, we propose a solution creation method for MOEA/D by using
the improving move of the current and previous solutions corresponding to each
sub-problem. This paper is organized as follows. In Section 2, we explain the pro-
posed strategy and its implementation. Next, we use computational experiments
to demonstrate and validate the usefulness of the proposed strategy in Section
3. Finally, we conclude this paper and give some future research directions in
Section 4.
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2 Proposed Strategy and Implementations

In this section, we �rst explain our idea using a distance minimization problem.
In this problem, as Fig. 1 shows, we need to minimize four objectives, which
are f1: Distance to P1, f2: Distance to P2, f3: Distance to P3, and f4: Distance
to P4. When a better solution (i.e., O�spring 4 in Fig. 1) is generated for a
weight vector w with the current solution x (i.e., the red point in the �gure), it
is likely that we will be able to �nd a further better solution in the improving
direction (i.e., a candidate solution as shown by the yellow circle along the red
line). Examination of such a promising solution may improve the convergence
speed of MOEA/D.

We assume that the current solution is replaced with the candidate solution
in Fig. 1. Then as Fig. 2 shows, we also assume that a better solution (i.e.,
O�spring 5) is found. In this case, we can examine a candidate solution along
the improving direction (e.g., Candidate Solution A on the red line). We can
also generate another Candidate Solution B by considering both the current
improving direction and the previous improving direction.

Fig. 1. Illustration of the proposed idea (use of the moves in the current generation).

Fig. 2. Illustration of the proposed idea (use of the moves in the current and previous
generations).
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Fig. 3. Illustration of the proposed idea where the candidate is not better than the
current solution.

However, the candidate solutions (e.g., the yellow circle) are not always better
than the o�spring solution (e.g., the blue circle) as shown in Fig. 3. In this case,
the current solution (e.g., the red circle) is replaced with the o�spring solution
(e.g., the blue circle), not with the candidate solution (the yellow circle).

In this paper, we implement this idea for MOEA/D with the PBI function
(θ = 5). We propose three di�erent implementations (i.e., Type1, Type2, and
Type3) to generate candidate solutions. Type1 implementation uses the moves of
the solution for the current sub-problem. Type2 implementation uses the moves
of the solution for the current sub-problem and the moves of its neighboring so-
lutions. Type3 implementation uses the moves of all solutions in the population.
Additionally, each implementation can be further subdivided into two sub-types.
The �rst sub-type considers only the current improving direction, and the second
sub-type considers both the current and previous improving directions.

It should be noted that in the standard MOEA/D implementation, the initial
population is randomly generated and assigned to each weight vector, which may
a�ect the performance of the proposed strategy. An example is shown in Fig. 4.
Fig. 4 illustrates the improving moves of the current solution x 4 for the weight
vector w4. In the �gure, the pink curve is the Pareto front, x 4

Initial is a randomly
generated initial solution, x 4

(2) is the current solution after the 2nd generation
(which is the best solution among the generated |Si| o�spring solutions in the
neighborhood during the 2nd generation), and x 4

(3) is the current solution after
the 3rd generation. In many cases, the move from x 4

Initial to x 4
(2) is not a good

direction (the red arrow) while the move from x 4
(2) to x 4

(3) is usually a good
direction (the blue arrow).

The following are the details of the implementation of our strategy in each
type.

Type1: Independent Formulation for Each Sub-problem. We denote the
current solution for the weight vector w i at the end of the t

th generation by x i(t).
In Type1 implementation, when x i(t) is better than x i(t-1), a new candidate
solution is generated by the proposed strategy with a probability of 0.5. The
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Fig. 4. Illustration of the improvement of the current solution x 4 for the weight vector
w4.

total move during the tth generation is de�ned as ∆x i(t) = x i(t)−x i(t-1). Since
the improving direction in the second generation is not reliable, ∆x i(t) is de�ned
as ∆x i(t) = 0 for t = 2. A new candidate solution (i.e., xCandidate

i ) is generated
from x i(t) and ∆x i(t) as explained latter in detail. If xCandidate

i is better than
the current solution x i(t), x i(t) is replaced with xCandidate

i . xCandidate
i is also

compared with the neighboring solutions.
When no solution is improved during the tth generation (i.e.,x i(t) = x i(t-1)),

no candidate solution is generated. Even in this case, the current solution can
be updated by a candidate solution generated for a neighboring weight vector.

Type1-1: Use of the Current Move. In Type1-1 MOEA/D, we only use the
current move to generate candidates. The candidate solution is generated as
xCandidate
i = x i(t) + η∆x i(t) where η is a non-negative constant parameter.

Type 1-2: Use of the Current and Previous Moves. In Type1-2 MOEA/D, we
consider both the current and previous improving directions. The problem is
how to de�ne the previous improving direction since the current solution was
not always improved during the (t-1)th generation. Thus, we de�ne the previous
improving direction using the latest improved generation k before the tth gen-
eration as ∆x i(k) = x i(k)− x i(k-1), where generation k is the latest improved
generation (1 < k < t) before the tth generation. If there is no improved genera-
tion before the tth generation, we de�ne ∆x i(k) as ∆x i(k) = 0. When k = 2, we
de�ne ∆x i(k) as ∆x i(k) = 0 since the initial solution is randomly assigned. Then,
a candidate solution can be generated as xCandidate

i = x i(t)+η∆x i(t)+α∆x i(k)
where η and α are non-negative constant parameters.

Type1-2*: One Variant of Type1-2. In Type1-2* MOEA/D, a simpli�ed version
of the de�nition of the candidate solution is to use the current and previous
moves as xCandidate

i = x i(t) + η∆x i(t) +α∆x i(t-1). In this variant, the move in
the (t-1)th generation is used even if ∆x i(t-1) = 0. In early generations, it is likely
that the current solution is frequently improved. Thus, this variant is similar to
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Type1-2 MOEA/D. However, in late generations, the current solution is not
frequently improved. As a result, this variant is similar to Type1-1 MOEA/D.

Type2: Use of the Moves of Neighboring Solutions. In Type2, when at
least one solution in the neighborhood Si is improved during the tth generation,
the candidate solution is generated with a small probability (in our experiment,
the probability is set as 5/|Si|). The total move during the tth generation is
de�ned as ∆x i(t) = x i(t)−x i(t-1), and the total move during the tth generation
in the neighborhood Si is de�ned as ∆Six i(t) =

∑
j∈Si

(x j(t) − x j(t-1)) where
x i is included in Si. Since the improving direction in the second generation is
not reliable, ∆x i(t) and ∆Si

x i(t) are de�ned as ∆x i(t) = 0 and ∆Si
x i(t) = 0 for

t = 2. Then, xCandidate
i is generated as explained below. If xCandidate

i is better
than the current solution x i(t), x i(t) is replaced with xCandidate

i . xCandidate
i is

also compared with the neighboring solutions.
When no solution in the neighborhood Si is improved during the tth gen-

eration (i.e., x j(t) = x j(t-1)), no candidate solution is generated. Even in this
case, the current solution can be updated by a candidate solution generated for
a neighboring weight vector.

Type2-1: Use of the Current Move. In Type2-1 MOEA/D, we use the total
move in the neighborhood Si to generate candidates. The candidate solution is
generated as xCandidate

i = x i(t) + η∆x i(t) + ηSi
∆Si

x i(t) where η and ηSi
are

non-negative constant parameters. In this formulation, ∆x i(t) equals to 0 in
many cases. However, ∆Six i(t) is not zero in many cases since all the moves in
the neighborhood are summed up.

Type2-2: Use of the Current and Previous Moves. In Type2-2 MOEA/D, we
use the current and previous moves in the neighborhood Si to generate can-
didates. We de�ne the previous improving direction using the latest improved
generation k before the tth generation as ∆x i(k) and ∆Si

x i(k), where k is the
latest improved generation (1<k<t) where at least one solution in the neigh-
borhood Si is improved before the tth generation. If there is no improved gen-
eration before the tth generation, we de�ne ∆x i(k) and ∆Six i(k) as 0. We also
de�ne ∆x i(k) and ∆Si

x i(k) as 0 when k = 2 since the initial solution is ran-
domly assigned. Then, a candidate solution can be generated as xCandidate

i =
x i(t)+η∆x i(t)+α∆x i(k)+ηSi

∆Si
x i(t)+αSi

∆Si
x i(k), where η, ηSi

, α and αSi

are non-negative constant parameters.

Type3: Use of the moves of All Solutions in the Population. In Type3,
when at least one solution in the population is improved during the tth gen-
eration, the candidate solution is generated with a small probability (in our
experiment, the probability is set as 5/|S|). The total move during the tth gen-
eration is de�ned as ∆x i(t) = x i(t) − x i(t-1), and the total move during the
tth generation in the population S is de�ned as ∆Sxi(t) =

∑
j∈S(x j(t) − x j(t-

1)). For t = 2, ∆x i(t) and ∆Sx i(t) are de�ned as ∆x i(t) = 0 and ∆Sx i(t) = 0.
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Then, xCandidate
i is generated. When no solution in the population S is improved

during the tth generation, no candidate solution is generated.

Type3-1: Use of the Current Move. In Type3-1 MOEA/D, we use the total move
in the population S to generate candidates. The candidate solution is generated
as xCandidate

i = x i(t) + η∆x i(t) + ηS∆Sx i(t), where η and ηS are non-negative
constant parameters. It should be noted that all solutions in the population have
the same value of ∆Sx i(t).

Type3-2: Use of the Current and Previous Moves. In Type3-2 MOEA/D, we use
the current and previous moves in the population S to generate candidates. We
de�ne the previous improving direction using the latest improved generation k
before the tth generation as ∆x i(k) and ∆Sx i(k), where k is the latest improved
generation (1<k<t) where at least one solution in the population is improved
before the tth generation. The candidate solution is de�ned as xCandidate

i =
x i(t)+η∆x i(t)+α∆x i(k)+ηS∆Sx i(t)+αS∆Sx i(k), where η, ηS , α and αS are
non-negative constant parameters.

To speed up the convergence speed, we try to �nd a candidate solution in
the improving direction. Parameter values decide the position of a candidate
solution in the improving direction. For simplicity, in this paper, we set η and
α as 1 since we consider that the total move of the solution during each gener-
ation has the same weight. When using the total move in the neighborhood or
population, we add all moves in the neighborhood or population together. Since
the neighborhood and population size may a�ect the position in the improving
direction, we set ηSi

and αSi
as 1/|Si|, and set ηS and αS as 1/|S|.

3 Experimental Study

To examine the usefulness of the proposed strategy (its seven implementations),
we use a multi-objective distance minimization problem (MDMP) in the 2-
dimensional space [11, 12]. The e�ect can be visually examined by drawing the
trajectory of the current solutions. The distance minimization problem is gener-
ated by using the following four points in the 2-dimensional space [1, 1001]×[1,
1001]: (2, 6), (6, 2), (2, 2), (6, 6). The four points are intentionally placed in
a small region around the corner (1, 1) of the 2-dimensional space in order to
examine the e�ect of the proposed strategy in comparison with the standard
implementation of MOEA/D. In this problem, we need to minimize four objec-
tives, which are f1: Distance to P1, f2: Distance to P2, f3: Distance to P3, and
f4: Distance to P4.

Experiment settings for the 2-dimensional MDMP problem are as follows:
Software Platform. We use PlatEMO [13] as the experiment platform.

PlatEMO is an open-source platform based on MATLAB for evolutionary multi-
objective optimization.

Parameter Settings. Population size N is set to 56. This setting is based
on the number of weight vectors generated by the Das and Dennis method [14].
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The termination condition is set to 560 solution evaluations. Each algorithm is
applied to each test problem for 31 independent runs.

Performance Metrics. The IGD [15] and IGD+ [16] indicators are used to
evaluate the performance of each algorithm.

The experiment results are shown in Table 1. The average values of IGD and
IGD+ over 31 runs are summarized in the table. Each algorithm is compared with
the standard MOEA/D using the Wilcoxon rank sum test with the signi�cance
level of 0.05, in which the symbol "+" means that the compared algorithm is
signi�cantly better than the standard MOEA/D, the symbol "−" means that
the compared algorithm is signi�cantly worse than the standard MOEA/D, and
the symbol "=" means that there is no statistically signi�cant di�erence between
the compared algorithm and the standard MOEA/D. The statistical test results
are summarized at the bottom of each table. The best result is highlighted by
blue font, and the worst result is highlighted by red font.

As Table 1 shows, almost all algorithms perform well on MDMP. Although
Type2-2 MOEA/D performs the worst among all algorithms, there is no statis-
tically signi�cant di�erence between it and the standard MOEA/D.

Table 1. Average IGD+ and IGD Values on MDMP (d = 2) obtained by MOEA/D
with the proposed strategy and the standard MOEA/D.

Problem Indicator Type1-1 Type1-2 Type1-2* Type2-1 Type2-2 Type3-1 Type3-2 MOEA/D
MOEA/D MOEA/D MOEA/D MOEA/D MOEA/D MOEA/D MOEA/D

MDMP IGD+ 6.9620e-1 + 7.2649e-1 = 6.4160e-1 + 8.3517e-1 = 9.3748e-1 = 7.5255e-1 = 7.9250e-1 = 8.0039e-1
IGD 1.0345e+0 + 1.0950e+0 = 9.9320e-1 + 1.2195e+0 = 1.3138e+0 = 1.1216e+0 = 1.1941e+0 = 1.2015e+0

+/−/= 2/0/0 0/0/2 2/0/0 0/0/2 0/0/2 0/0/2 0/0/2

Fig. 5. Average IGD+ value of the current population at each generation over 31 runs
on MDMP (d = 2).
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Fig. 6. The current population in the decision space of each algorithm at the �rst six
generations on MDMP (d = 2).

To clearly show the convergence ability of MOEA/D with the proposed strategy
and the standard MOEA/D, we use Fig.5 to show the relation between the
average IGD+ value (y-axis) and the number of examined solutions (x-axis) for
each algorithm. As shown in Fig. 5, MOEA/D with the proposed strategy clearly
converges faster than the standard MOEA/D before 300 solution evaluations.

To show the convergence trajectory of each algorithm, we choose a single run
with the median IGD+ value among the 31 runs and plot the population in the
decision space at each of the �rst 6 generations in Fig. 6 (a)-(h). The blue square
frame represents the Pareto set. The triangles, squares and dots represent the
solutions in the decision space. In Fig. 6, more red dots in the blue square means
faster convergence of the algorithm. In Fig. 6 (a), only a small number of red
dots are in the blue square frame. However, in Fig. 6 (b)-(h), more red dots are
in the blue square frame, which indicates that the proposed strategy can clearly
speed up the convergence of MOEA/D in MDMP (d = 2).

To further examine the usefulness of the proposed strategy, we use four large-
scale MDMPs [17, 18] to test the performance of the MOEA/D with the proposed
strategy (its seven implementations). Their decision spaces are 10-, 100-, 500-,
and 1000-dimensional, respectively. The decision space of each problem is [0,
100]×[0, 100]× ... ×[0, 100]. Each problem uses the following four points P1 (1,
1, 0, ..., 0), P2 (5, 1, 0, ..., 0), P3 (1, 5, 0, ..., 0), P4 (5, 5, 0, ..., 0). The four
points are intentionally placed in a small region around the corner (0, 0, ...,
0) in order to examine the e�ect of the proposed strategy in comparison with
the standard implementation of MOEA/D. Furthermore, the usefulness of the
proposed strategy is also examined on the large-scale three-objective DTLZ1-4
test problems with d = 500 and 1000 where d is the number of decision variables.
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Table 2. Average IGD+ and IGD Values on MDMP (d = 10, 100, 500, 1000) obtained
by the MOEA/D with the proposed strategy and the standard MOEA/D.

Problem Indicator Type1-1 Type1-2 Type1-2* Type2-1 Type2-2 Type3-1 Type3-2 MOEA/D
MOEA/D MOEA/D MOEA/D MOEA/D MOEA/D MOEA/D MOEA/D

MDMP IGD+ 1.9645e-1 + 1.9320e-1 + 1.9351e-1 + 1.9973e-1 + 1.9738e-1 + 2.0323e-1 + 1.9888e-1 + 2.1986e-1
d=10 IGD 3.2504e-1 + 3.1739e-1 + 3.1753e-1 + 3.3500e-1 + 3.2549e-1 + 3.4067e-1 + 3.3254e-1 + 3.7101e-1

MDMP IGD+ 8.0770e+1 + 6.1398e+0 + 1.6572e+1 + 6.1579e+1 + 3.4040e+0 + 1.3828e+1 + 2.8008e+0 + 2.6249e+2
d=100 IGD 8.0770e+1 + 6.2429e+0 + 1.6639e+1 + 6.1579e+1 + 3.6002e+0 + 1.3840e+1 + 2.9816e+0 + 2.6249e+2
MDMP IGD+ 2.4575e+2 + 2.3197e+1 + 7.0410e+1 + 1.9420e+2 + 2.4354e+1 + 8.5562e+1 + 1.4220e+1 + 7.8203e+2
d=500 IGD 2.4575e+2 + 2.3247e+1 + 7.0419e+1 + 1.9420e+2 + 2.4397e+1 + 8.5562e+1 + 1.4221e+1 + 7.8203e+2
MDMP IGD+ 3.7112e+2 + 5.9208e+1 + 1.3932e+2 + 2.9512e+2 + 4.3213e+1 + 1.3603e+2 + 2.4485e+1 + 1.1599e+3
d=1000 IGD 3.7112e+2 + 5.9219e+1 + 1.3932e+2 + 2.9512e+2 + 4.3230e+1 + 1.3603e+2 + 2.4485e+1 + 1.1599e+3
+/−/= 8/0/0 8/0/0 8/0/0 8/0/0 8/0/0 8/0/0 8/0/0

Our experimental settings are as follow. Population size N is set to 120 on
MDMP (d = 10, 100, 500, 1000) and 91 on DTLZ1-4 (d = 500, 1000). This
setting is based on the number of weight vectors generated by the Das and
Dennis method [14]. The termination condition is set to 6000, 12000, 60000,
and 120000 solution evaluations for MDMP with d = 10, 100, 500 and 1000,
respectively, and 10000 solution evaluations for DTLZ1-4 with d =500 and d =
1000. Each algorithm is applied to each test problem for 31 independent runs.

Experimental results on MDMP (d = 10, 100, 500, 1000) and DTLZ1-4 (d =
500, 1000) are summarized in Table 2 and Table 3, respectively.

In Table 2, MOEA/D with any implementation of the proposed strategy
performs clearly better than the standard MOEA/D on the large-scale MDMP.
Especially, Type3-2 MOEA/D performs clearly the best among all algorithms.
In Table 3, MOEA/D with the proposed strategy performs clearly better than
the standard MOEA/D on the large-scale DTLZ1 and DTLZ3. However, Type1
and Type2 MOEA/D are slightly worse than the standard MOEA/D on DTLZ2
and DTLZ4.

Table 3. Average IGD+ and IGD Values on DTLZ1-4 (d = 500, 1000) obtained by
the MOEA/D with proposed strategy and the standard MOEA/D.

Problem Indicator Type1-1 Type1-2 Type1-2* Type2-1 Type2-2 Type3-1 Type3-2 MOEA/D
MOEA/D MOEA/D MOEA/D MOEA/D MOEA/D MOEA/D MOEA/D

DTLZ1 IGD+ 3.9936e+3 + 4.1167e+3 + 4.0188e+3 + 4.1254e+3 + 4.1009e+3 + 6.0997e+3 + 5.3836e+3 + 8.8888e+3
d=500 IGD 3.9936e+3 + 4.1167e+3 + 4.0188e+3 + 4.1254e+3 + 4.1009e+3 + 6.0997e+3 + 5.3836e+3 + 8.8888e+3
DTLZ1 IGD+ 8.3988e+3 + 8.5284e+3 + 8.3412e+3 + 8.5624e+3 + 8.4580e+3 + 1.3750e+4 + 1.2297e+4 + 2.2017e+4
d=1000 IGD 8.3988e+3 + 8.5284e+3 + 8.3412e+3 + 8.5624e+3 + 8.4580e+3 + 1.3750e+4 + 1.2297e+4 + 2.2017e+4
DTLZ2 IGD+ 1.7238e+1 - 1.7315e+1 - 1.7948e+1 - 1.9439e+1 - 2.0212e+1 - 1.5447e+1 = 1.5937e+1 - 1.4910e+1
d=500 IGD 1.7238e+1 - 1.7316e+1 - 1.7949e+1 - 1.9440e+1 - 2.0213e+1 - 1.5448e+1 = 1.5937e+1 - 1.4911e+1
DTLZ2 IGD+ 4.8929e+1 - 4.9394e+1 - 4.8678e+1 - 5.1909e+1 - 5.2703e+1 - 4.5575e+1 - 4.5847e+1 - 4.4273e+1
d=1000 IGD 4.8929e+1 - 4.9395e+1 - 4.8678e+1 - 5.1910e+1 - 5.2703e+1 - 4.5575e+1 - 4.5848e+1 - 4.4274e+1
DTLZ3 IGD+ 1.2993e+4 + 1.3134e+4 + 1.2957e+4 + 1.3304e+4 + 1.3051e+4 + 2.0050e+4 + 1.8446e+4 + 2.9554e+4
d=500 IGD 1.2993e+4 + 1.3134e+4 + 1.2957e+4 + 1.3304e+4 + 1.3051e+4 + 2.0050e+4 + 1.8446e+4 + 2.9554e+4
DTLZ3 IGD+ 2.7139e+4 + 2.7667e+4 + 2.6864e+4 + 2.7382e+4 + 2.7132e+4 + 4.5599e+4 + 3.9454e+4 + 7.4475e+4
d=1000 IGD 2.7139e+4 + 2.7667e+4 + 2.6864e+4 + 2.7382e+4 + 2.7132e+4 + 4.5599e+4 + 3.9454e+4 + 7.4475e+4
DTLZ4 IGD+ 2.1359e+1 - 1.9885e+1 - 2.0306e+1 - 2.0505e+1 - 2.2361e+1 - 1.6608e+1 = 1.6949e+1 = 1.7311e+1
d=500 IGD 2.1366e+1 - 1.9894e+1 - 2.0314e+1 - 2.0513e+1 - 2.2367e+1 - 1.6622e+1 = 1.6960e+1 = 1.7324e+1
DTLZ4 IGD+ 5.4717e+1 - 5.6761e+1 - 5.7274e+1 - 5.8057e+1 - 5.7015e+1 - 5.2648e+1 - 5.3349e+1 - 5.0683e+1
d=1000 IGD 5.4720e+1 - 5.6764e+1 - 5.7276e+1 - 5.8060e+1 - 5.7018e+1 - 5.2651e+1 - 5.3352e+1 - 5.0687e+1

+/−/= 8/8/0 8/8/0 8/8/0 8/8/0 8/8/0 8/4/4 8/6/2
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Fig. 7. Average IGD+ value of the current population at each generation over 31 runs
on MDMP (d = 1000).

Fig. 8. Average IGD+ value of the current population at each generation over 31 runs
on DTLZ3 (d = 1000).

Figs. 7 and 8 show the relation between the average IGD+ value (y-axis) and
the number of examined solutions (x-axis) obtained by the standard MOEA/D
and MOEA/D with the proposed strategy on MDMP (d=1000) and DTLZ3
(d=1000). As shown in Fig. 7 and Fig. 8, MOEA/D with any implementation
of the proposed strategy converges much faster than the standard MOEA/D.
Type3-2 MOEA/D clearly converges the fastest on MDMP (d = 1000). However,
on DTLZ3 (d = 1000), Type3 MOEA/D performs not as well as the MOEA/D
with the other implementations (whereas Type3 MOEA/D is much faster than
the standard MOEA/D). By comparing between Type1-1 and Type1-2 (and
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comparing between Type2-1 and Type2-2, and between Type3-1 and Type3-
2), we can conclude that the use of the current and previous moves can help
MOEA/D converge faster than the use of only the current move. By comparing
Type1-2 with Type1-2*, we can conclude that using the move in the (t-1)th

generation even if ∆xi(t-1) = 0 is not as e�cient as using the move in the latest
improved generation before the tth generation.

4 Conclusion and Future Work

In this paper, we proposed a novel solution generation operator for MOEA/D.
By using the moves of solutions in the current and previous generations, we can
generate promising candidate solutions. The experimental studies showed that
the proposed strategy signi�cantly speeds up the convergence speed of MOEA/D.

One future research topic is to investigate the sensitivity of the proposed
strategy to parameter settings. In the current implementation, the total move
during each generation is given the same weight and each parameter value is
�xed. One possibility is to investigate the use of adaptive parameter controls
in the implementation. For example, the control parameters could be decreased
throughout the evolutionary process. Another possibility is to use a random
number as a parameter value instead of a �xed value.
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