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Abstract. Normalization is commonly used in multiobjective evolution-
ary algorithms (MOEASs) in order to handle multiobjective optimization
problems with differently-scaled objectives. The goal of normalization is
to obtain uniformly-distributed solutions over the entire Pareto front.
However, in practice, such a uniform solution set may not be a well-
distributed solution set for decision making when the desired distribution
of solutions is not uniform. To obtain a well-distributed solution set that
meets the desired distribution, in this paper, we propose a preference-
based nonlinear normalization method that transforms the objective
space based on the probability integral transform theorem. As a result,
the use of a standard MOEA to search for uniformly-distributed solutions
in the transformed objective space leads to a desired well-distributed
solution set. The proposed method is incorporated in three different
MOEAs (i.e., a Pareto dominance-based MOEA, a decomposition-based
MOEA, and an indicator-based MOEA). Experimental results demon-
strate the flexibility and effectiveness of the proposed method. Our code
is available at https://github.com/linjunhe/moea-pn.

Keywords: Evolutionary multiobjective optimization (EMO) - Prefer-
ence incorporation - Decision making - Normalization.

1 Introduction

Real-world multiobjective optimization problems (MOPs) usually have multi-
ple conflicting and differently-scaled objectives [20,29]. To solve such problems,
various multiobjective evolutionary algorithms (MOEAs) have been proposed in
recent years [21]. In recently proposed MOEAs, normalization is usually used
before environmental selection to handle badly-scaled MOPs [6, 15,23, 24, 38].
Various studies have been conducted to examine and improve normalization
methods (see Section II-B). In such studies on normalization, researchers usually
implicitly assume that the desired distribution of solutions on each objective is
uniform. As a result, the goal of normalization is to obtain uniformly-distributed
solutions over the entire Pareto front in a normalized objective space.
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However, for some real-world applications where the law of diminishing re-
turns holds, a uniformly-distributed solution set may not be a well-distributed
solution set for decision making [10]. For example, let us assume that we are
looking for a car for our personal use based on the following two objectives:
maximization of the maximum speed and minimization of the price. For the first
objective, presentation of uniformly-distributed solutions to the decision maker
may be acceptable when he/she does not articulate any preferences. However,
for the second objective, the price distribution of available cars is generally not
uniform but positively skewed [10, 34] as illustrated in Fig. 1(a). This naturally
raises a question: which is a better solution set between the following two sets
of prices (x1000$) of 10 candidate cars for decision making?

e Positively skewed distribution (see Fig. 1(b)): A = {40, 70,90, 100, 120, 140,
170, 210,270, 400}.

e Uniform distribution (see Fig. 1(c)): B = {40, 80, 120, 160, 200, 240, 280, 320,
360, 400}.

(a)
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Fig. 1. Hlustration of (a) histogram of car price, (b) positively skewed solutions (well-
distributed for decision making), and (c) uniformly-distributed solutions.

As pointed out in [34], the presentation of candidate car set A with a biased
distribution will be more useful for most people than candidate car set B with
a uniform distribution. This is because the distribution of A is similar to the
distribution of cars in the car market.

To obtain a well-distributed solution set like A for decision making, in this
paper, a preference-based nonlinear normalization method is proposed. The con-
tributions of this paper can be summarized as follows.

e We propose a preference-based nonlinear normalization method. Based on
the preference (i.e., the desired distribution of solutions based on collected
data), the objective space is transformed according to the probability integral
transform theorem, such that the search of uniformly-distributed solutions
in the transformed space results in well-distributed solutions in the original
objective space for decision making.
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e We discuss the relation between the proposed normalization method and
the conventional linear normalization method. Experimental results show
that the conventional linear normalization method is a special case of the
proposed method.

e The proposed method can be incorporated in any existing MOEAs in a plug-
in manner. This is different from existing preference incorporation methods
(see Section II-C) that need a specific modification in the environmental
selection mechanism of each MOEA. We incorporate the proposed method
in different MOEAs to demonstrate its flexibility and effectiveness.

The rest of the paper is organized as follows. Preliminary knowledge on mul-
tiobjective optimization, linear normalization, and preference-based MOEAs are
presented in Section 2. In Section 3, the proposed preference-based nonlinear
normalization is presented, and its relation to linear normalization is discussed.
In Section 4, comprehensive experiments are conducted to verify the discussed
relation and to demonstrate the flexibility and effectiveness of the proposed
method. In Section 5, we conclude the paper.

2 Preliminaries

2.1 Multiobjective Optimization Problem

A multiobjective optimization problem (MOP), which aims to minimize m con-
flicting objectives at the same time, can be written as follows.

Minimize £(x) = (f1(x), f2(%),-- - fn(x))" (1)
subject to x € (2,

where f;(x) is the i-th objective function and x is an n-dimensional decision
vector in the feasible region {2 C R™. Due to the conflicting nature of the objec-
tives, the MOP has a set of Pareto optimal solutions, called the Pareto set. The
image of the Pareto set in the objective space is called the Pareto front (PF).

2.2 Linear Normalization

To deal with MOPs with differently-scaled objectives, objective space normal-
ization is usually performed before environmental selection of an MOEA. Each
objective function in (1) is usually linearly transformed as follows.

. (%) — 2
filx) = %,ie{l,z...,m}, 2)

where ﬁ(x) is the i-th normalized objective function, and z!” and 2! are the

lower and upper bounds of the i-th objective function, respectively.
Investigation on normalization has attracted a lot of researchers’ attention.

As pointed out in [16, 18], normalization methods can affect the performance of
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decomposition-based MOEAs in both positive and negative ways. Fukumoto and
Oyama [12] and Liu et al. [25] investigated the impact of normalization methods
for constrained decomposition-based MOEAs and multi-modal MOEASs, respec-
tively. He et al. [17] analyzed the relation between normalization methods and
weight vector scaling methods for decomposition-based MOEAs. A metric was
proposed in [13] for investigating normalization methods. To make use of the
advantages of normalization and reduce its negative effects, several new nor-
malization methods were proposed. Blank et al. [3] proposed a normalization
method characterized by extreme point preservation. Dynamic normalization
methods were designed based on a sigmoid function in [14] or a step function
in [28]. Wang et al. [36] proposed to use surrogate-based search to improve nor-
malization bounds. Among these studies on normalization, researchers usually
implicitly assume that the desired distribution of solutions on each objective is
uniform. The proposed preference-based nonlinear normalization method in this
paper does not rely on this assumption.

2.3 Preference Incorporation

Generally, decision makers are often interested in a small region of the PF instead
of the entire PF, known as the region of interest (ROI). To search for the ROI,
various approaches have been proposed to incorporate preference into MOEAs.
These approaches can be roughly divided into the following four categories.

e Objective comparison-based approaches. Relative importance of each objec-
tive can be described by weights specified by the decision maker, by linguistic
labels obtained from pairwise comparisons between objectives, or by pair-
wise trade-off information provided by the decision maker. This information
is then used to modify the Pareto dominance [11, 5], crowding operator [27],
or quality indicator [40] to bias the population towards the ROL.

e Solution ranking-based approaches. Pairwise comparisons between solutions
are made by the decision maker to learn a utility function. The learned utility
function is then used to modify the dominance relation [7,19], crowding
operator [1], or both of them [4] in order to identity the ROI.

e Reference point-based approaches. The decision maker’s preference is articu-
lated by a reference point or a set of reference points. Solutions close to the
reference point(s) are then prioritized by modifying the crowding operator
[8,26], dominance [39], or quality indicator [30] to guide the search towards
the reference point(s).

e Desirability function-based approaches. For each objective, two thresholds
(i.e., an absolutely satisfying objective value and a marginally infeasible ob-
jective value) are provided by the decision maker. These thresholds serve
as parameters of desirability functions, by which the objective functions are
transformed [35].

Most existing approaches directly incorporate preference information into the
environmental selection mechanisms of MOEAs (e.g., modifying the dominance
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relation, the crowding operator, and the quality indicator). The proposed method
focuses on the normalization part of MOEAs. The preference is incorporated
by nonlinearly normalizing the objective space without any modifications on
the environmental selection mechanisms of the original MOEAs. Note that the
desirability function-based approach [35] also transforms the objective space.
However, our method is different from [35] as follows.

1. The transformation in [35] is based on a desirability function and the decision
maker is asked to provide an absolutely satisfying objective value and a
marginally infeasible objective value. Our method transforms the objective
space based on the probability integral transform theorem when the desired
distribution of solutions (i.e., the distribution of collected data) is available.

2. The goal of [35] is to search for uniformly-distributed solutions in the ROL
Our method targets for a well-distributed solution set that meets the desired
distribution of solutions for decision making.

3. The approach in [35] is designed for hypervolume-based MOEAs while our
method can be integrated with any existing MOEAs.

3 Proposed Preference-Based Nonlinear Normalization

In this section, the proposed preference-based nonlinear normalization method
is presented. The goal of the proposed method is to adjust the distribution
of solutions for each objective. For each objective, the desired distribution of
solutions can be either inferred from collected data or specified by the decision
maker.

With the desired distribution, the objective is transformed by the corre-
sponding cumulative distribution function (CDF). This transformation can be
understood by the probability integral transform theorem [33]: Suppose that
a random variable X has a continuous distribution for which the CDF is &.
Then #(X) is a random variable having a standard uniform distribution. This
theorem ensures that the desired distribution of solutions for the original objec-
tive function is converted into a uniform distribution after such transformation.
As a result, we can use a standard MOEA to search for uniformly-distributed
solutions in the transformed objective space. The obtained solutions are well-
distributed in the original objective space. The details of the proposed nonlinear
transformation are presented as follows.

Collected data. The desired distribution of solutions can be modeled by col-
lected data like Fig. 1(a). Since the original distribution of collected data is
usually unknown, we cannot compute the exact CDF. Instead, we compute the
empirical CDF. The empirical CDF is an estimate of the CDF that generates
the points in the sample, and it converges with the probability of one to the
original distribution according to the Glivenko—Cantelli theorem [32]. For a data
set {x1,xa,...,x,}, the empirical CDF is calculated as follows:

1
@(m):E|{mi|xi§x,i:1,2,...7n}|, (3)
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where | - | measures the cardinality of a set. In other words, the value of the
empirical CDF at a given point x is the proportion of observations that are less
than or equal to x.

Note that the empirical CDF is a step function that makes a discrete jump
of size 1/n at each of the n data points. Due to its discreteness, the empirical
CDF cannot be directly used as a continuous transformation function for each
objective. To transform objective values at points other than the original data
points, linear interpolation is performed by connecting each midpoint of adjacent
two jumps (e.g., adjacent data points) in the empirical CDF to smooth the step
function.

Preference distribution. When data are unavailable, the distribution can
be specified by the decision maker. We use the beta distribution to model the
decision maker’s preference due to its ability to take a great diversity of shapes
using only two positive real number parameters o and 3. By specifying the two
parameters, the decision maker can express his/her preference for the desired
distribution of solutions for each objective as shown in Fig. 2(a). For example,
the distribution with @ = 1 and 8 = 10 means that the decision maker prefers to
have more solutions with small objective values. As an extreme case, a = =1
means that the decision maker has no preference about the distribution of desired
solutions.

35 1 7
3 0.8
2.5]
E 2! :D._)O.B
a4
1.5 s 0.4 —
1 0.2 —a=1,3=10
0.5 X : —a=8=10
ol 0 ) a=83=2
0 0204 06 08 1 0 02 04 06 08 1
(@) (b)

Fig. 2. Example of (a) probability density functions (PDFs) and (b) their correspond-
ing cumulative distribution functions (CDFs) of the beta distribution with different
values of o and S.

With the articulated preference distribution as a beta distribution, the ob-
jective function is transformed by the following transformation function:

Sz |, B) = B(O%m / et - e, (4)

where B(+) is the beta function. In practice, Eq. (4) is the cumulative distribution
function (CDF) of the beta distribution. Fig. 2(b) shows the corresponding CDF's
for the PDFs in Fig. 2(a). The slope in each CDF shows how quickly the objective
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value is changing after transformation. A steeper slope in the CDF means that
more solutions are preferred while a gentler slope means that less solutions are
preferred.

If the decision maker has no preference for an objective, the desired distri-
bution is specified as a uniform distribution (i.e., « = 8 = 1). For the uniform
distribution U(a,b), where a and b are the minimum and maximum values, its
CDF is ¢(z) = (x —a)/(b—a) for a < 2 < b. By replacing x with f;(x), we have
P(fi(x)) = (fi(x) —a)/(b— a). When a and b are the lower and upper bounds
as in (2), such transformation is exactly the same as the linear normalization.
As shown in Fig. 2(b), the CDF of the uniform distribution (i.e., « = 8 =1) is
linear. The proposed transformation performs a linear mapping from the origi-
nal objective values to the range [0, 1], which is exactly the same as the linear
normalization. That is, when the uniform distribution is specified, the proposed
normalization method is equivalent to the common linear normalization method.

Incorporation in MOEAs and indicators. The proposed nonlinear nor-
malization method can be easily incorporated into any MOEAs in a plug-in
manner. This is because the proposed method focuses on the normalization part
of MOEAs, which is an independent algorithmic component. In most existing
preference-based MOEAs, the environmental selection mechanism of each algo-
rithm is modified from its base MOEA. Such modification only works for that
specific MOEA. On the contrary, the proposed method enables any MOEAs
to search in a transformed objective space. In this paper, we incorporate the
proposed normalization method into three MOEAs, one from each categories:
SPEA2 [42] (a Pareto dominance-based MOEA), NSGA-III [6] (a decomposition-
based MOEA), and SMS-EMOA [2] (an indicator-based MOEA). The resulting
algorithms are denoted as SPEA2-PN, NSGA-ITI-PN, and SMS-EMOA-PN, re-
spectively.

To evaluate the solutions obtained by preference-based MOEAs using ref-
erence points, Li et al. [22] transforms the obtained solutions using reference
points, and the standard performance indicators are used. Inspired by [22], we
use the proposed normalization method to transform the obtained solutions. Af-
ter the transformation, the standard performance indicators can be used directly
to evaluate the obtained solutions. In this paper, we use the hypervolume (HV)
[43] and pure diversity (PD) [37] indicators. In the transformed objective space,
these indicators are referred to as P-HV and P-PD.

4 Experimental Studies

In this section, we experimentally examine the proposed normalization method.
First, the relation between the proposed method and the conventional linear nor-
malization method is examined. Then, the proposed method is incorporated into
different MOEAs and is examined on test problems under different preferences.
We also visually examine the obtained solutions in the original and transformed
objective spaces. Our experiments are conducted on PlatEMO [31]. In all the
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Table 1. Average P-HV values over 51 runs obtained by the original SPEA2 and its
two variants with different normalization methods.

Problem SPEA2 SPEA2-N SPEA2-PN

SZDT1 6:9959¢-1"(2:396-3)'= 7.0343¢c-1 (1.04¢-3)
SZDT2 4.2694e-1 (8.656-4) — 4.2935e-1 (2.65¢-4
SZDT3 5.5570¢-1 (4.686-2) — 5.7666e-1 (2.25¢-2
1/ -/~ 0/3/0 0/0/3

~ 17.0383¢-1 (3.06e-4)
~ 4.2923e-1 (4.06e-4)
~ 5.7659-1 (3.01e-2)

)
)

examined algorithms, the population size is set to 20 in order to clearly show
the effect of preference incorporation. The evaluation of 50, 000 solutions is used
as the termination condition. Each algorithm is executed 51 times on each test
problem. The Wilcoxon rank-sum test with a significance level of 0.05 is used
to validate the statistical significance. The three symbols “4”, “—” and “x”
mean that an algorithm is significantly better than, significantly worse than, or
statistically similar to the baseline algorithm, respectively.

4.1 Relation to Linear Normalization

We have discussed the relation between the conventional linear normalization
method and the proposed preference-based normalization method in Section 3.
To experimentally demonstrate such relation, we compare the original SPEA2,
SPEA2 with the linear normalization (denoted as SPEA2-N), and SPEA2 with
the proposed preference-based normalization (SPEA2-PN). In SPEA2-PN, a uni-
form distribution (i.e., « = 8 = 1) is applied to each objective. Since the pro-
posed method does not modify the original SPEA2 and introduces no additional
parameters, the algorithm parameters recommended in the original SPEA2 are
used.

We choose ZDT1-3 [41] to examine the three algorithms. ZDT1 and ZDT2
have connected convex and connected concave PFs, respectively. ZDT3 has a
disconnected PF with both concave and convex parts. Since our focus in this
paper is badly-scaled MOPs, we modified the objectives of each test problem
such that the first objective has the range [0, 1000] and the second objective has
the range [0, 1]. The modified MOPs with badly-scaled PFs are called SZDT1-3.

The average P-HV values and the standard deviation values are presented in
Table 1. The original SPEA2 is significantly worse than SPEA2-PN (i.e., with the
proposed normalization method) on the three badly-scaled test problems, while
the results obtained by SPEA2-PN are statistically similar to these obtained by
SPEA2-N (i.e., with the linear normalization method).

In Fig. 3, we show the the final population obtained by each algorithm on
SZDT1 in a single run with the medium P-HV value. We can see that the orig-
inal SPEA2 is not able to obtain uniformly distributed solutions on the PF of
SZDT1, while SPEA2 with each normalization method obtains a uniform solu-
tion set. This is because the original SPEA2 maintains the diversity only relying
the objective f; with a large scale since the value of the other objective fs is
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Fig. 3. Solutions obtained by the original SPEA2 and its two variants with different
normalization methods on SZDT1.

neglectable due to the lack of normalization. Theoretically, the same results will
be obtained from SPAE2-N and SPEA2-PN with o = 8 = 1. Minor differences
between Fig. 3(a) and Fig. 3(b) are due to randomness (e.g., different initial
populations). These results clearly show that the proposed preference-based nor-
malization method performs similarly as the conventional linear normalization
method when the uniform distribution is applied for each objective in the pro-
posed method.

4.2 Incorporation into Different MOEAs

In order to show the flexibility and effectiveness of the proposed normalization
method, we incorporate it into SPEA2, NSGA-III, and SMS-EMOA. The result-
ing algorithms are denoted as SPEA2-PN, NSGA-III-PN, and SMS-EMOA-PN,
respectively. We consider three specifications of preference (o, 3) (see Fig. 2):

e Pref 1: (1,10) for f; and (1,1) for fo,
e Pref 2: (10, 10) for f; and (1,1) for fo,
e Pref 3: (10,1) for f; and car price data [9] (see Fig. 1(a)) for fs.

The MOEASs are examined by comparing their original version with its vari-
ant using the proposed normalization method. We use P-HV and P-PD to evalu-
ate the ability of each algorithm to obtain solutions with the desired distribution.
The results are presented in Table 2 and Table 3. Compared with the baseline
algorithms, we can see that MOEAs with the proposed method is able to find
better solutions under different preferences in terms of both P-HV and P-PD.
That is, the proposed normalization method is able to change the search behav-
ior of different MOEAs and enables them to search for solutions with the desired
distribution and good convergence.

The obtained solutions in a single run with the median P-HV values among
51 runs of SMS-EMOA-PN under each preference setting are shown in Fig. 4 for
SZDT1-3. We can see that solutions with different distributions are found when
different preference settings are used regardless of the PF shape. For example,
with the first type of preference, the obtained solutions concentrate on the upper
left corner of the PF as shown in Figs. 4.
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Fig. 4. Solutions obtained by SMS-EMOA-PN on SZDT1-3 with different preferences.

Table 2. Average P-HV values over 51 runs obtained by SPEA2, NSGA-III,
SMS-EMOA and their variants incorporated with the proposed method.

SPEA2 NSGA-IIIT SMS-EMOA

Problem Original Proposed Original Proposed Original Proposed
SZDT1 3.6668e-1 — 3.8084e-1 3.4133e-1 — 3.7897e-1 3.5272¢-1 — 3.8395e-1

Pref 1 SZDT2 1.8173e-1 — 1.8256e-1 1.8217e-1 — 1.8255e-1 1.8035e-1 — 1.8438e-1
SZDT3 2.7447e-1 — 2.7805e-1 2.6290e-1 — 2.7609e-1 2.7270e-1 ~ 2.7527e-1
SZDT1 7.3480e-1 — 7.4153e-1 7.2809e-1 — 7.3734e-1 7.3669e-1 — 7.4386e-1

Pref 2 SZDT2 3.6777e-1 — 3.7531e-1 3.6882e-1 — 3.7541e-1 3.7044e-1 — 3.8079%e-1
SZDT3 5.9604e-1 ~ 5.9973e-1 5.9299¢-1 — 5.9639%-1 5.9323e-1 — 6.0059%¢-1
SZDT1 7.6441e-1 — 8.2860e-1 7.0662e-1 — 8.1430e-1 7.6629¢-1 — 8.2969¢-1

Pref 3 SZDT2 3.8772e-1 — 4.8247e-1 4.1563e-1 — 4.7781le-1 3.8747e-1 — 4.8571e-1
SZDT3 2.5070e-1 — 3.5554e-1 2.3818e-1 — 3.2576e-1 1.8924e-1 — 3.1968e-1
+/—-/~ 0/8/1 0/9/0 0/8/1
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Table 3. Average P-PD values over 51 runs obtained by SPEA2, NSGA-III,
SMS-EMOA and their variants incorporated with the proposed method.

SPEA2 NSGA-III SMS-EMOA
Problem  Original Proposed Original Proposed Original  Proposed

SZDT1 1.0294e+3 — 1.2592e+3 0.8314e+3 — 1.2403e+3 0.7924e+3 — 1.1645e+3
Pref 1 SZDT2 3.7400e+2 — 6.2384e+2 3.6494c+2 — 6.0748e+2 3.5841e+2 — 4.5318e+2
SZDT3 7.1915e+2 — 8.3424e+2 7.2647e+2 — 9.7171e+2 6.8284e+2 — 8.8513e+2
SZDT1 1.0118e+3 — 1.2125e+3 0.9623e+3 — 1.0573e+3 0.9885e+3 — 0.9909e+3
Pref 2 SZDT2 1.2875e+3 — 1.2915e+3 1.3405e+3 — 1.4146e+3 1.0512¢+3 — 1.1568e+3
SZDT3 6.6243e+2 ~ 6.7921e+2 6.6102e+2 — 7.6149e+2 6.2770e+2 — 7.3463e+2
SZDT1 1.0248e+3 — 1.2914e+3 1.0318¢+3 — 1.2765e+3 0.8897e+3 — 1.0341e+3
Pref 3 SZDT2 1.0297e+3 — 1.5667e+3 1.0449¢+3 — 1.3278e+3 0.9596¢+3 — 1.2921e+3
SZDT3 3.7906e+2 — 8.3445e+2 4.6532e+2 — 8.1875e+2 3.1576e+2 — 8.5598e+2

T/ =/~ 0/8/1 0/9/0 0/9/0

4.3 Analysis in the Transformed Objective Space

In the previous subsection, we demonstrated the effectiveness and flexibility of
the proposed normalization method. Here, we analyze the search behavior in
the transformed objective space. The solution set obtained by each of the three
algorithms (SPEA2-PN, NSGA-III-PN and SMS-EMOA-PN) on SZDT1 with
Pref 2 is shown in each figure in Fig. 5 in the original and transformed spaces.

@(f1) @(f1) @(f1)
0 0.5 1 0 0.5 1 0 0.5 1
1 : ) 1fe ) ) 1f, ) True PF
0.8 o 08 108 | e Solutions
[N 1
0.6(@ e 0.6 1 0.61© @ 1 PF in the
f2 0.4 '3.:: 0.4 “‘ 0.4 \.‘ Transformed
0.2 Reoee, 0.2 Qoo 02 < Space
l . _©® . ‘ Solutions in the
0 e 0 0 ® o Transformed
0 500 1000 0 500 1000 0 500 1000 Space
fi fi fi
(a) SPEA2-PN (b) NSGA-III-PN  (c) SMS-EMOA-PN

Fig. 5. Solutions obtained by (a) SPEA2-PN, (b) NSGA-III-PN, and (c) SMS-EMOA-
PN on SZDT1 with Pref 2 in the original and transformed spaces.

To understand the search behavior of the proposed algorithms, we can take
a look at the transformed objective space (with the top x-axis labeled as @(f1))
in Fig. 5. The true PF of SZDT1 (dark gray curve) is transformed to the light
gray curve by the proposed nonlinear normalization method. Since the linear
normalization is used for f;, the fo value of each solution has no change whereas
the location of each solution (i.e., f; value) is changed by the nonlinear trans-
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formation (see the dark dotted arrow in Fig. 5(a)). Uniformly-distributed blue
solutions are obtained by SPEA2 in the transformed objective space. That is,
by searching for the uniformly distributed blue solutions using SPEA2 with no
modification in the transformed objective space, we can obtain the red solutions
with desired distribution in the original space.

In addition, we can see that the distributions of the blue solutions by different
algorithms are slightly different in Fig. 5. For SPEA2-PN, the obtained blue solu-
tions are uniformly distributed due to the k-th nearest distance used in SPEA2.
For NSGA-III-PN, the blue solutions close to each weight vector in NSGA-III
are obtained. For SMS-EMOA-PN, the blue solutions that maximizes the HV
value are obtained. This explains why different solution sets are obtained by the
three algorithms in the original objective space even with the same preference.

5 Conclusion

In this paper, we proposed a preference-based nonlinear normalization method.
Different from existing preference incorporation methods where the preference is
incorporated by modifying the environmental selection mechanisms of existing
MOEAs, we related preference with normalization. The preference is articulated
in the form of a desired distribution of solutions, and then is incorporated into
the proposed normalization method to transform the objective space according
to the probability integral transform theorem. The proposed method enables
any MOEAs to search for uniformly-distributed solutions in a transformed ob-
jective space and results in solutions with the desired distribution in the original
objective space. We discussed the relation between the proposed normalization
method and the conventional linear normalization method. We showed that when
a uniform distribution is applied to each objective, the proposed method is the
same as the linear normalization method. To show the flexibility of the proposed
normalization method, we incorporated it into three MOEAs: SPEA2, NSGA-
ITI, and SMS-EMOA. Experimental results showed that the standard MOEAs
can find solutions of interest after incorporating the proposed method. We also
analyzed the obtained solutions in the transformed space to clearly explain why
the proposed method is effective. In this preliminary work, we only reported the
results on two-objective MOPs. It is an interesting future research direction to
examine the proposed method on MOPs with more than two objectives.
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