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Abstract. Degenerate multi-objective test problems are included in test suites to 

evaluate EMO algorithms on a wide variety of test problems. However, it was 

pointed out in some studies that the frequently-used degenerate DTLZ5, DTLZ6 

and WFG3 test problems do not have degenerate Pareto fronts. Their Pareto 

fronts are different from the originally intended degenerate shapes. Actually, 

they are partially degenerate test problems. Modified formulations of DTLZ5 

and DTLZ6 were proposed to remove the non-degenerate parts of their Pareto 

fronts. However, the original formulations of DTLZ5, DTLZ6 and WFG3 con-

tinue to be used as degenerate test problems in many studies whereas they are 

not degenerate test problems. One issue in their use as degenerate test problems 

is that reference point sets for IGD calculation are sampled from the originally 

intended degenerate Pareto fronts whereas they are not the true Pareto fronts. 

Nevertheless, the original DTLZ5, DTLZ6 and WFG3 formulations are useful 

for performance evaluation of EMO algorithms since their Pareto front shapes 

are similar to some real-world problems and much more complicated than other 

test problems. That is, their use helps us to evaluate the performance of EMO 

algorithms on a wide variety of test problems including realistic and challeng-

ing test problems. In this paper, we clearly demonstrate the usefulness of the 

original DTLZ5, DTLZ6 and WFG3 formulations. Then, after pointing out the 

difficulty in their use in computational experiments, we explain how we can ob-

tain reliable experimental results on those test problems. 

Keywords: Evolutionary multi-objective optimization, test problems, degener-

ate Pareto fronts, partially degenerate Pareto fronts, IGD indicator.  

1 Introduction 

In the field of evolutionary multi-objective optimization (EMO), the performance of 

EMO algorithms is usually evaluated through computational experiments on bench-

mark test suites. Thus, it is highly desirable that a benchmark test suite consists of a 

wide variety of test problems with diverse characteristics including realistic test prob-

lems. In recent two decades, several benchmark test suites (e.g., ZDT [1], DTLZ [2], 

WFG [3], MaF [4], UF [5]) have been proposed to facilitate the growth of the EMO 
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field. These test suites cover various problem characteristics. For example, these test 

suites include test problems with various fitness landscapes such as unimodal, multi-

modal, biased, and deceptive. They also include test problems with various Pareto 

front shapes such as linear, convex, concave, and disconnected. In some test suites, 

multi-objective test problems with degenerate Pareto fronts are included to increase 

the diversity of test suites. For example, in the DTLZ test suite [2], DTLZ5 and 

DTLZ6 were designed as degenerate test problems. In the WFG test suite [3], WFG3 

was designed as a degenerate test problem.  

An 𝑀-objective problem is generally considered degenerate if the dimension of its 

Pareto front is smaller than (𝑀 −1) [12], which can be a result of the existence of 

redundant objectives in its problem formulation [27]. Examples of degenerate Pareto 

fronts are illustrated in Fig. 1, in which the degenerate Pareto fronts of DTLZ5, 

DTLZ6 and WFG3 with three objectives are shown. These three test problems have 

been frequently used to demonstrate the ability of EMO algorithms to handle multi-

objective problems with degenerate Pareto fronts (e.g., see [6]-[10]). If a problem 

contains both degenerate and non-degenerate parts of the Pareto front, it is referred to 

as a partially degenerate problem in this paper. In [27], it was demonstrated that par-

tially redundant objectives can lead to a partially degenerate problem.  

 

Fig. 1. The intended degenerate Pareto fronts for the three-objective DTLZ5, DTLZ6 and 

WFG3 test problems.  

While the DTLZ5, DTLZ6 and WFG3 test problems have been frequently used to 

evaluate the performance of EMO algorithms on degenerate problems, it was pointed 

out in some studies that these three test problems are not degenerate test problems [3], 

[11]-[12]. Their Pareto fronts are different from the originally intended shapes. Actu-

ally, they are partially degenerate test problems [12]. The true Pareto fronts for 

DTLZ5 and DTLZ6 have non-degenerate parts when they have more than three ob-

jectives [3], [11]-[12]. WFG3 has a non-degenerate part of the Pareto front when it 

has three or more objectives [12]. In order to remove the non-degenerate parts, modi-

fied formulations of DTLZ5 and DTLZ6 were proposed in [11]. In [12], constraint 

conditions were derived to remove the non-degenerate part of the Pareto front of 

WFG3. Despite these efforts, the original formulations of DTLZ5, DTLZ6 and WFG3 

are still used as degenerate test problems in many studies. 
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In this paper, we point out that the original formulations of DTLZ5, DTLZ6 and 

WFG3 with the partially degenerate Pareto fronts are good test problems. This is be-

cause their Pareto front shapes are similar to those of some real-world problems. This 

is also because their Pareto front shapes are much more complicated than those of the 

other DTLZ and WFG test problems. That is, the original formulations of DTLZ5, 

DTLZ6 and WFG3 are more realistic and challenging in performance evaluation of 

EMO algorithms than the other DTLZ and WFG test problems. One issue in their use 

is that the originally intended Pareto front of each test problem is often used to sample 

reference point sets for the inverted generational distance (IGD) [13] calculation. That 

is, the reference point sets and the test problems are not consistent. In other words, the 

original formulations of DTLZ5, DTLZ6 and WFG3 are not appropriately used for 

evaluating the performance of EMO algorithms. In this paper, we demonstrate the 

usefulness of the original DTLZ5, DTLZ6 and WFG3 test problems. We also provide 

suggestions on how to use them for performance evaluation of EMO algorithms.  

The organization of this paper is as follows. Section 2 provides brief discussions on 

the Pareto fronts of DTLZ5, DTLZ6 and WFG3 with the original problem formula-

tions. In Section 2, we also review the availability of these three test problems and 

their reference point sets for IGD calculation in frequently-used EMO experimental 

platforms: jMetal [22], PlatEMO [19] and pymoo [23]. Section 3 presents our exper-

imental results for IGD-based performance evaluation. Section 4 concludes this paper.  

2 DTLZ5, DTLZ6 and WFG3 Test Problems  

2.1 Pareto Fronts of DTLZ5, DTLZ6 and WFG3 

As shown in Fig. 1, the originally intended Pareto front shapes of the DTLZ5 and 

DTLZ6 test problems are one-dimensional curves independent of the number of ob-

jectives [2], [3], [12]. However, it was pointed out in [3], [11]-[12] that the true Pareto 

fronts of DTLZ5 and DTLZ6 are not degenerate when the number of objectives is 

larger than three. The true Pareto front shapes of DTLZ5 and DTLZ6 are unknown for 

the case of four or more objectives. For WFG3, the originally intended Pareto front 

shape is a line as shown in Fig. 1. However, the true Pareto front of WFG3 includes 

the line part and other solutions [12], which gives rise to a flag-like shape in the three-

objective case (see Fig. 2 (a)). In Fig. 2 (b), we show an approximated Pareto front of 

a real-world three-objective “reactive power optimization” problem called DDMOP5 

in [24]. We can see that the two Pareto fronts in Fig. 2 have similar shapes. A similar 

partially degenerate flag-shaped Pareto front is also shown in [20] for a real-world 

three-objective “two-bar truss design” problem called RE3-3-1. For the case of four or 

more objectives, the true Pareto front shape of WFG3 is unknown.  
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                            (a)                                                                   (b) 

Fig. 2. The partially degenerate Pareto front of the three-objective WFG3 test problem in (a) 

and an approximated Pareto front of the real-world DDMOP5 problem [24] in (b).  

To obtain clear pictures of the true Pareto front shapes of DTLZ5, DTLZ6 and 

WFG3 in a high-dimensional objective space, we use five EMO algorithms, i.e., 

MOEA/D with the PBI function [14], NSGA-III [15], 𝜃-DEA [16], NSGA-II/SDR 

[17] and PREA [18] to approximate the Pareto front of each test problem in the five-

objective space. These five algorithms are chosen based on the following considera-

tions. MOEA/D and NSGA-III are frequently-used classic EMO algorithms. The 

other three are recently-proposed EMO algorithms which have shown promising per-

formance on many-objective problems. We use PlatEMO [19] for our experiments in 

this paper. The population size in each algorithm is specified as 210. Each algorithm 

is terminated after 1,000 generations. For other specifications in each algorithm, the 

default settings in PlatEMO are used. Each algorithm is executed 31 times on each 

test problem. To approximate the true Pareto front of each test problem, we use all 

non-dominated solutions among obtained solutions by 31 runs of the five algorithms 

(i.e., 31 5 = 155 runs in total).  

Fig. 3 shows an approximated Pareto front for the five-objective DTLZ5. Due to 

the paper length limitation, approximated Pareto fronts for the other two test problems 

are shown in the supplementary file (which is available from 

https://github.com/HisaoLabSUSTC/EMO2023). The approximated Pareto front in 

Fig. 2 (b) was created in the same manner as in Fig. 3 whereas the population size was 

91 in Fig. 2 (b). As shown in Fig. 3 (and Figs. S1-S2 in the supplementary file), the 

approximated Pareto fronts of DTLZ5, DTLZ6 and WFG3 are highly irregular in the 

high-dimensional objective space. They are clearly different from the other test prob-

lems in the DTLZ and WFG test suites. Thus, their use increases the diversity of the 

test problems in these test suites. 
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Fig. 3. An approximated Pareto front for the five-objective DTLZ5 test problem. Solutions are 

projected to the two-dimensional subspace.   

A major challenge posed by DTLZ5, DTLZ6 and WFG3 is to find their entire Pa-

reto fronts including the non-degenerate parts. Clearly different solution sets are often 

obtained by different EMO algorithms on these test problems even when almost the 

same results are obtained on other more standard test problems such as DTLZ1-4 and 

WFG4-9 with regular triangular Pareto fronts [21]. As an example, Fig. 4 shows the 

final population of a single run with the median IGD value among 31 runs of each 

algorithm on the five-objective DTLZ5 in the 𝑓1-𝑓4 subspace (see Section 3 for IGD 

calculation). The 𝑓1-𝑓4 subspace is shown here because it provides a clear demonstra-

tion of the search performance of the five EMO algorithms on the five-objective 

DTLZ5 problem with a partially degenerate Pareto front. The upper left subfigure 

shows the approximated Pareto front in the 𝑓1-𝑓4 subspace, which is a copy from Fig. 

3. In Fig. 4, clearly different solution sets are obtained from the five algorithms. No 

algorithms find a well-distributed solution set over the entire Pareto front. NSGA-III 

and PREA seem to find more diverse solutions on the non-degenerate part of the Pa-

reto front than the other three algorithms. The main difference among the obtained 

solution sets in Fig. 4 is the diversity of solutions over the non-degenerate part (see 

also Fig. 7 for the ten-objective DTLZ5 and Fig. 8 for the ten-objective WFG3 in 

Section 3). Thus, the three partially degenerate test problems are useful for evaluating 

the diversification ability of EMO algorithms.  
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Fig. 4. A solution set obtained by a single run of each algorithm on the five-objective DTLZ5. 

The final population of a single run is projected to the two-dimensional subspace with f1 and f4. 

2.2 Availability of the Test Problems  

In the previous subsection, we have discussed the usefulness of the original problem 

formulations of DTLZ5, DTLZ6 and WFG3 for performance evaluation of EMO 

algorithms. Whereas the three test problems are useful, one critical issue is that the 

originally intended degenerate Pareto fronts have been used to sample reference point 

sets for IGD calculation. For DTLZ5, DTLZ6 and WFG3 with the original problem 

formulations, IGD-based evaluation results are unreliable and misleading if reference 

point sets are sampled from the originally intended degenerate Pareto fronts. Under 

this reference point sampling mechanism, the calculated IGD values evaluate the 

approximation quality of the obtained solution sets only for the degenerate parts of the 

partially degenerate Pareto fronts.  

In many EMO experimental platforms, the original formulations of DTLZ5, 

DTLZ6 and WFG3 are available. It is therefore necessary to check whether the refer-

ence point set for IGD calculation is sampled from the entire partially degenerate 

Pareto front of each test problem. In this subsection, we review the problem formula-

tions of the three test problems and the corresponding reference point sets for IGD 

calculation used in three commonly-used EMO experimental platforms: jMetal [22], 

PlatEMO [19] and pymoo [23].  

All the jMetal, PlatEMO and pymoo platforms use the original problem formula-

tions of DTLZ5, DTLZ6 and WFG3. Table 1 lists the reference point sets for IGD 

calculation for the three test problems in each platform. In jMetal and pymoo, the 

reference point sets for IGD calculation for DTLZ5, DTLZ6 and WFG3 are sampled 

from the originally intended degenerate Pareto fronts when the number of objectives 

(i.e., 𝑀) is three. This setting is appropriate for DTLZ5 and DTLZ6 since they have 

degenerate Pareto fronts when 𝑀 = 3. However, this setting is not appropriate for 

WFG3 since its Pareto front is not degenerate when 𝑀 ≥ 3. For 𝑀 > 3, the reference 
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point sets for the three test problems are not provided in jMetal and pymoo. When 

reference point sets are not available in jMetal and pymoo, they can be constructed by 

combining the results of all runs of compared algorithms. This is a widely-used prac-

tice in the EMO field for unknown Pareto fronts (whereas this does not always lead to 

reliable comparison results [25]).  

In PlatEMO, the provided reference point sets for IGD calculation for DTLZ5, 

DTLZ6 and WFG3 are sampled from the originally intended degenerate Pareto fronts 

regardless of the number of objectives. Thus, the reference points are not appropriate 

for DTLZ5 and DTLZ6 for 𝑀 > 3 and WFG3 for 𝑀 ≥ 3. When the IGD indicator is 

used to evaluate the performance of EMO algorithms in PlatEMO for the three test 

problems, misleading results are likely to be obtained. It is therefore necessary to 

update the reference point sets for the three test problems in order to avoid creating 

unreliable IGD-based evaluation results. Moreover, it is important for users to be 

aware that the original problem formulations of DTLZ5, DTLZ6 and WFG3 are par-

tially degenerate problems. When these three test problems are used for performance 

evaluation of EMO algorithms, we should always ensure that an appropriate reference 

point set for IGD calculation is used for each test problem.  

Table 1. Reference point sets used for IGD calculation in jMetal, PlatEMO and pymoo.  

Test 

problem 
𝑀 

Reference point sets used for IGD calculation 

jMetal [22] PlatEMO [19] pymoo [23] 

DTLZ5, 

DTLZ6, 

WFG3 

3 

Sampled from the 

intended degenerate 

Pareto front. 

Sampled from the 

intended degenerate 

Pareto front. 

Sampled from the 

intended degenerate 

Pareto front. 

DTLZ5, 

DTLZ6, 

WFG3 

> 3 Not provided. 

Sampled from the 

intended degenerate 

Pareto front. 

Not provided. 

3 Performance Evaluation Results  

In this section, we examine the performance of the five EMO algorithms (MOEA/D 

[14], NSGA-III [15], 𝜃-DEA [16], NSGA-II/SDR [17] and PREA [18]) on DTLZ5, 

DTLZ6 and WFG3 with the original formulations. The population size for each algo-

rithm is specified as 91 for three-objective problems, 210 for five-objective problems, 

and 275 for ten-objective problems. The termination condition of each algorithm is 

1,000 generations. Each algorithm is executed 31 times on each test problem. 

We report two types of IGD-based performance evaluation results for DTLZ5, 

DTLZ6 and WFG3. One is based on the reference point set sampled from the origi-

nally intended degenerate Pareto front (i.e., the reference point set provided in PlatE-

MO) for each test problem, and the other is based on the reference point set consisting 

of all non-dominated solutions among obtained solutions by 31 runs of the five algo-

rithms. In the latter setting, the reference point set for each test problem is an approx-

imation of the partially degenerate (i.e., true) Pareto front. In order to examine the 

reliability of the constructed reference point sets using the obtained solutions by the 

five algorithms, two different termination conditions are used to construct the refer-
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ence point sets. One is 1,000 generations (which is the same as the termination condi-

tion for performance evaluation of the five algorithms), and the other is 10,000 gener-

ations. That is, we perform IGD-based comparison of the five algorithms using the 

three reference point sets for each test problem. Figs. 5-6 show the three reference 

point sets for the ten-objective DTLZ5 and WFG3, respectively. The reference point 

sets provided in PlatEMO (i.e., the left figures in Figs. 5-6) are clearly different from 

the reference point sets obtained by the five algorithms with the two termination con-

ditions (i.e., the center and right figures in Figs. 5-6). The difference in the reference 

point sets between the two termination conditions is small especially in Fig. 6 on the 

ten-objective WFG3. Reference point sets for the other many-objective test problems 

(i.e., the five-objective DTLZ5, DTLZ6 and WFG3, and the ten-objective DTLZ6) 

are shown in the supplementary file.  

Experimental results using the three reference point sets are summarized in Tables 

3-5 using the ranking of the five algorithms (“1” is the best and “5” is the worst).  

 

 

Fig. 5. Reference point sets used for IGD calculation for the ten-objective DTLZ5: (left) pro-

vided by PlatEMO, (middle) all non-dominated solutions obtained by the five algorithms with 

the termination condition of 1,000 generations, (right) all non-dominated solutions obtained by 

the five algorithms with the termination condition of 10,000 generations. 

 

Fig. 6. Reference point sets used for IGD calculation for the ten-objective WFG3: (left) provid-

ed by PlatEMO, (middle) all non-dominated solutions obtained by the five algorithms with the 

termination condition of 1,000 generations, (right) all non-dominated solutions obtained by the 

five algorithms with the termination condition of 10,000 generations. 

Table 2 is based on the reference point sets in PlatEMO. Tables 3-4 are based on 

the reference point sets obtained by the five algorithms (after 1,000 generations in 

Table 3 and 10,000 generations in Table 4). In each table, the best rank “1” is high-

10-objective DTLZ5

10-objective WFG3
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lighted in bold. The average IGD value of each algorithm on each test problem is 

shown in Tables S1-S3 in the supplementary file for the three reference point sets.  

In Table 2 with the PlatEMO reference point sets, NSGA-II/SDR has the best aver-

age rank over the three test problems (see the bottom line of Table 2). However, the 

difference in the average ranks among the five algorithms is small. A different algo-

rithm has the best rank for a different test problem. For example, PREA has the best 

rank on the three-objective DTLZ5, DTLZ6 and WFG3 test problems whereas 

MOEA/D has the best rank on DTLZ5 and DTLZ6 with five and ten objectives.  

In Tables 3-4, almost the same results are obtained. That is, Table 3 is almost the 

same as Table 4. For example, PREA always has the best rank for all test problems in 

these two tables. This is because similar reference point sets are obtained after 1,000 

generations (in Table 3) and 10,000 generations (in Table 4) for each test problem as 

demonstrated in Figs. 5-6 (i.e., the center and right figures).  

Table 2. The rank of each algorithm based on the average IGD value calculated using the refer-

ence point sets provided in PlatEMO.  

Problem 𝑀 MOEA/D NSGA-III 𝜃-DEA NSGA-II/SDR PREA 

DTLZ5 

3 5 2 3 4 1 

5 1 3 5 2 4 

10 1 4 3 2 5 

DTLZ6 

3 3 2 4 5 1 

5 1 3 4 2 5 

10 1 5 2 3 4 

WFG3 

3 5 3 4 2 1 

5 5 3 4 1 2 

10 5 4 1 3 2 

Average 3.00 3.22 3.33 2.67 2.78 

 

Table 3. The rank of each algorithm based on the average IGD value calculated using the refer-

ence point set obtained by the five algorithms after 1,000 generations.  

Problem 𝑀 MOEA/D NSGA-III 𝜃-DEA NSGA-II/SDR PREA 

DTLZ5 

3 4 2 3 5 1 

5 5 2 3 4 1 

10 5 2 3 4 1 

DTLZ6 

3 3 2 4 5 1 

5 4 2 3 5 1 

10 5 3 2 4 1 

WFG3 

3 2 3 5 4 1 

5 2 3 4 5 1 

10 4 2 5 3 1 

Average 3.78 2.33 3.56 4.33 1.00 
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Table 4. The rank of each algorithm based on the average IGD value calculated using the refer-

ence point set obtained by the five algorithms after 10,000 generations.  

Problem 𝑀 MOEA/D NSGA-III 𝜃-DEA NSGA-II/SDR PREA 

DTLZ5 

3 4 2 3 5 1 

5 5 2 3 4 1 

10 5 2 3 4 1 

DTLZ6 

3 3 2 4 5 1 

5 4 2 3 5 1 

10 5 3 2 4 1 

WFG3 

3 2 3 5 4 1 

5 2 3 4 5 1 

10 3 2 5 4 1 

Average 3.67 2.33 3.56 4.44 1.00 

 

One clear observation from Tables 2-4 is that totally different results are obtained 

between Table 2 and Tables 3-4. For the five test problem instances shaded in Tables 

3-4, the best algorithm on each test problem instance in Table 2 shows the worst per-

formance in Table 3-4. Especially, on the ten-objective DTLZ5, the totally opposite 

rankings of the five algorithms are obtained between Table 2 (i.e., 1, 4, 3, 2, 5) and 

Tables 3-4 (i.e., 5, 2, 3, 4, 1). These different results are obtained since Table 2 is 

based on only the degenerated parts whereas Tables 3-4 are based on the entire Pareto 

fronts. For example, in Fig. 4, the degenerate part of the five-objective DTLZ5 is well 

covered by the solution set obtained by MOEA/D. Thus, MOEA/D is evaluated as the 

best algorithm for the five-objective DTLZ5 in Table 2. However, the same solution 

set covers only a small region of the non-degenerate part in Fig. 4. Thus, MOEA/D is 

evaluated as the worst algorithm for the five-objective DTLZ5 in Tables 3-4. 

To further examine the experimental results in Tables 2-4, the solution sets ob-

tained by the five algorithms on the ten-objective DTLZ5 and WFG3 are shown as 

parallel coordinate plots in Figs. 7 and 8, respectively. For each algorithm on each test 

problem, a single run with the median IGD value among 31 runs is used in these fig-

ures. The reference point sets obtained after 10,000 generations in Table 4 are used 

for IGD calculation to choose a single run in Figs. 7 and 8 (and also in Fig. 4).  

In Fig. 7, the solution set obtained by MOEA/D on the ten-objective DTLZ5 is 

similar to the PlatEMO reference point set in Fig. 5 (the left figure). Thus, MOEA/D 

is evaluated as the best algorithm on the ten-objective DTLZ5 in Table 2. However, 

the solution set obtained by MOEA/D is clearly different from the reference point sets 

obtained by the five algorithms after 1,000 and 10,000 generations in Fig. 5 (the cen-

ter and right figures). Thus, MOEA/D is evaluated as the worst algorithm in Tables 3-

4. Similar observations can be obtained for the solution sets of the other algorithms in 

Figs. 7-8 (e.g., the solution set by 𝜃-DEA in Fig. 8 is similar to the PlatEMO refer-

ence point set in Fig. 6). 
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Fig. 7. The solution sets obtained by the five algorithms on the ten-objective DTLZ5 test prob-

lem. A single run with the median IGD value is selected from 31 runs of each algorithm.  

 

Fig. 8. The solution sets obtained by the five algorithms on the ten-objective WFG3 test prob-

lem. A single run with the median IGD value is selected from 31 runs of each algorithm.  

Our experimental results in Tables 2-4 and Figs. 7-8 demonstrate that the reference 

point sets sampled from the originally intended degenerate Pareto front are not appro-

priate for DTLZ5, DTLZ6 and WFG3 with the original problem formulations (i.e., 
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with the partially degenerate Pareto fronts). That is, IGD-based evaluation results on 

these test problems can be misleading when the reference point sets for IGD calcula-

tion are sampled from the originally intended degenerate Pareto front. Our suggestion 

is to use all non-dominated solutions among obtained solutions by all runs of all the 

examined algorithms as a reference point set for IGD calculation. Moreover, it is ad-

visable to use an additional performance indicator (e.g., the hypervolume indicator) 

together with the IGD indicator for fair comparison of EMO algorithms. This is be-

cause performance comparison results based on a single indicator are not always reli-

able [26]. 

4 Conclusions 

In this paper, we showed that the partially degenerate Pareto fronts of the DTLZ5, 

DTLZ6 and WFG3 test problems with the original problem formulations are highly 

irregular in a high-dimensional objective space, which are clearly different from the 

originally intended degenerate Pareto fronts. Their Pareto fronts are similar to those of 

some real-world problems. Hence, the original formulations of the three test problems 

can be used to increase the diversity of test problems in the DTLZ and WFG test 

suites. That is, their original formulations are good test problems to evaluate the per-

formance of EMO algorithms. One critical issue in their use for performance evalua-

tion of EMO algorithms is that the originally intended degenerate Pareto fronts have 

been used to sample reference point sets for IGD calculation. That is, these three test 

problems have not been used appropriately in IGD-based performance evaluation. 

Our computational experiments in this paper demonstrated that IGD-based evaluation 

results based on reference point sets from the originally intended degenerate Pareto 

fronts are not reliable. Thus, it is always necessary to ensure that an appropriate refer-

ence point set for each test problem is used for IGD calculation in IGD-based perfor-

mance evaluation of EMO algorithms on these test problems.  

Since degenerate and partially degenerate problems are common in real-world ap-

plications [27], an interesting future research study would be to investigate the possi-

bility of quantifying or measuring degeneracy through exploratory landscape analysis 

[28].   
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