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Abstract. Various surrogate-based multiobjective evolutionary algori-
thms (MOEAs) have been proposed to solve expensive multiobjective
optimization problems (MOPs). However, these algorithms are usually
examined on test suites with unrealistically simple Pareto sets (e.g.,
ZDT and DTLZ test suites). Real-world MOPs usually have complicated
Pareto sets, such as a vehicle dynamic design problem and a power plant
design optimization problem. Such MOPs are challenging to construct
reliable surrogates for surrogate-based MOEAs. Constructed surrogates
with low accuracy are likely to make incorrect predictions and even mis-
lead the search direction. In this paper, we propose an improved fuzzy
classifier-based MOEA by leveraging the accuracy information of the
classifier. The proposed algorithm is compared with five state-of-the-
art algorithms on two well-known test suites with complicated Pareto
sets and four real-world problems. Experimental results demonstrate the
effectiveness of the proposed algorithm in solving realistic MOPs with
complicated Pareto sets when only a limited number of function evalua-
tions are available.

Keywords: Expensive multiobjective optimization · Evolutionary algo-
rithms · Fuzzy classifier · Surrogate models · Complicated Pareto set.

1 Introduction

Engineering optimization problems usually have two or more conflicting ob-
jectives, known as multiobjective optimization problems (MOPs) [16, 5] that
need to be optimized simultaneously. A number of multiobjective evolution-
ary algorithms (MOEAs) have been proposed to solve MOPs [45]. Typically,
MOEAs can be classified into three categories: dominance-based MOEAs [9, 47],
indicator-based MOEAs [2, 46, 33], and decomposition-based MOEAs [27, 42].
These MOEAs usually evaluate the quality of solutions based on the evaluated
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objective function values and require a large number of function evaluations
(FEs) [23, 33]. However, FEs are usually computationally expensive in engineer-
ing MOPs where the evaluation of a solution requires physical simulations that
consume a large amount of time or resources [5]. The available number of FEs
is usually limited for solving these expensive MOPs.

Several methods have been proposed for solving expensive MOPs. One of the
most efficient methods is surrogate-based MOEAs [17, 4, 8]. Generally, surrogate-
based MOEAs use computationally cheap surrogate models to replace the orig-
inal objective functions or fitness functions to evaluate the quality of solutions.
These surrogate-based MOEAs can be classified into two categories depending
on the types of surrogate models: regression-based MOEAs [17, 8, 24, 30] and
classification-based MOEAs [26, 41, 29].

– Regression-based MOEAs use regression models to approximate the original
objective functions or fitness functions of MOPs. The constructed models
are used to evaluate the quality of solutions. Generally, the number of con-
structed models is the same as the number of objective functions, with one
model for each objective function [21, 43, 3]. Therefore, the time consumption
of model construction is high, and this consumption will increase with the
increase in the number of objectives. Some algorithms have been proposed
to reduce the number of constructed regression models [8, 12].

– Classification-based MOEAs use classifiers to model the relation among solu-
tions, e.g., the Pareto dominance relation among solutions. These classifiers
are used to select promising solutions for subsequent optimization proce-
dures. Since classification-based MOEAs usually build one classifier to model
the relation among solutions, the number of constructed models is smaller
than that in the regression-based methods.

However, these surrogate-based algorithms have usually been examined on
test suites with simple Pareto sets. In Table 1, we summarize some typical
surrogate-based MOEAs and the test suites used in their experimental stud-
ies. We can see that ZDT [7], DTLZ [11] and WFG [14] test suites are com-
monly used to examine the performance of surrogate-based MOEAs. However,
the Pareto sets (PSs) of most of these test problems are linear and parallel to co-
ordinate axes, which are simple and unrealistic [22, 23]. Real-world MOPs, such
as a vehicle dynamic design problem [19] and a power plant design optimization
problem [13], usually have complicated PSs [23, 28, 15, 10] due to the linkages
between variables [28, 10] and the nonlinear shape of PSs [23]. It is worth noting
that real-world MOPs with complicated PSs are challenging to construct reli-
able surrogates for surrogate-based MOEAs. Constructed surrogates with low
accuracy are likely to make incorrect predictions and even mislead the search di-
rection. Although the accuracy of the surrogates can be measured during model
construction, it is rarely used as an indicator to guide the search.

In this paper, we improve our previous work [39] and propose an improved
fuzzy classifier-based multiobjective evolutionary algorithm (IFCS-MOEA) by
leveraging the accuracy information of the classifier. A novel sorting mechanism
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Table 1. Typical surrogate-based MOEAs and the test suites used in their experimen-
tal studies.

Algorithm Year Test suites

Regression-based MOEAs ParEGO [21] 2006 KNO1 [21], OKA [28], VLMOP [35], ZDT [7], DTLZ [11]
MOEA/D-EGO [3] 2010 KNO1 [21], VLMOP2 [35], ZDT [7], LZ [23], DTLZ [11]

K-RVEA [3] 2018 DTLZ [11], WFG [14]
KTA2 [30] 2021 DTLZ [11], WFG [14]

EDN-ARMOEA [12] 2022 DTLZ [11], WFG [14]

Classification-based MOEAs CSEA [29] 2019 DTLZ [11], WFG [14]
θ-DEA-DP [36] 2022 DTLZ [11], WFG [14]
MCEA/D [31] 2022 DTLZ [11], WFG [14]

is proposed to consider the membership degree of each solution and the accu-
racy of the classifier simultaneously. The proposed algorithm is compared with
five state-of-the-art surrogate-based algorithms on two well-known test suites
with complicated PSs and four real-world optimization problems to show its
superiority in dealing with realistic expensive MOPs.

The rest of this paper is organized as follows. Section 2 presents related work
to this paper. Section 3 presents the proposed IFCS-MOEA framework in detail.
Section 4 examines the effectiveness of the proposed framework and compares it
with five state-of-the-art algorithms. Section 5 concludes this paper.

2 Related Work

2.1 Multiobjective Optimization Problems

Typically, an MOP can be expressed as follows:

Minimize F (x) = (f1(x), · · · , fM (x))T,
subject to x ∈ Ω ⊂ Rn,

(1)

where x is an n-dimensional decision vector, Ω is the decision space, F (x) is an
M -dimensional objective vector, and fi(x), i = 1, . . . ,M is the i-th objective
function.

Since the objective functions in Eq. (1) are usually in conflict with each other,
it is impossible to find a single optimal solution that can optimize all objective
functions simultaneously. Therefore, Pareto optimal solutions are defined. Let
u and v be two solutions to Eq. (1). u is said to dominate v, if fi(u) ≤ fi(v)
for i = 1, . . . ,M and fj(u) < fj(v) for at least one j ∈ {1, . . . ,M}. Solution
u is regarded as a Pareto optimal solution if there does not exist any solution
that dominates u. The Pareto set (PS) is defined as the set of all Pareto optimal
solutions. The Pareto front (PF) is defined as the image of the PS in the objective
space.

2.2 Surrogate-based MOEAs

Regression models are widely used in surrogate-based MOEAs to approximated
the objective functions of MOPs. Knowles [21] proposed to use an efficient global
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optimization (EGO) algorithm [18] to solve expensive MOPs. The proposed al-
gorithm constructed a Gaussian process model to mimic the landscape of MOPs.
Zhang et al. [43] combined the EGO algorithm with MOEA/D to solve expen-
sive MOPs. The proposed algorithm constructed a Gaussian model to mimic
the landscape of each decomposed subproblem of an MOP. Chugh et al. [3] com-
bined the Kriging model with a reference vector guided evolutionary algorithm to
solve expensive MOPs. The proposed algorithm constructed each Kriging model
to mimic each objective function of an MOP. Song et al. [30] combined the
Kriging model with a two-archive evolutionary algorithm. The proposed method
constructed each Kriging model to approximate each objective function of an
MOP.

Generally, solutions in a population in MOEAs can be divided into two cat-
egories: non-dominated solutions and dominated solutions, based on the Pareto
dominance relation among them. Therefore, classifiers can be built to mimic
this relation among solutions and can be used to select promising solutions.
Loshchilov et al. [26] combined a classifier with a regression model to predict the
dominance relation between a new solution and the existing non-dominated so-
lutions. Bandaru et al. [1] applied multi-class classifiers to mimic the dominance
relation between each pair of solutions. Zhang et al. [41, 40] employed classifiers
to model the dominance relation among solutions and to pre-select promising
offspring solutions. Lin et al. [25] used a classifier to pre-select promising off-
spring solutions, thereby reducing the required number of FEs of MOEA/D.
Pan et al. [29] applied a classifier to predict the dominance relation between a
new solution and the reference solutions. Zhang et al. [38, 39] employed a fuzzy
classifier to assist environmental selection of MOEAs. Class labels and mem-
bership degrees were used to select promising offspring solutions for function
evaluations. Yuan et al. [36] proposed to use two feedforward neural network
models for solving expensive MOPs. One model was used to predict the Pareto
dominance relation between solutions, and another model was built to predict
the θ-dominance relation among solutions. Sonoda et al. [31] proposed to use
multiple classifiers for solving high-dimensional expensive MOPs. Each classifier
was constructed for each subproblem in the MOEA/D-DE algorithm. Zhang et
al. [37] proposed a dual fuzzy-classifier-based surrogate model. One fuzzy classi-
fier was constructed to learn the Pareto dominance relation among solutions, and
another fuzzy classifier was constructed to learn the crowdedness of solutions.

3 Our Proposed Algorithm

This section presents the details of our improved fuzzy classifier-based MOEA
(IFCS-MOEA) framework. IFCS-MOEA is proposed by using an improved fuzzy
classifier-based surrogate model (IFCS). The IFCS model is constructed for sort-
ing unevaluated solutions. First, Section 3.1 presents the general framework of
IFCS-MOEA. Then, Section 3.2 describes IFCS-based sorting strategy in detail.
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Algorithm 1: Framework of IFCS-MOEA

1 Initialize the population P = {x1, x2, · · · , xN}, and evaluate the solutions in P ;
2 Set Arc = P ;
3 while termination condition is not satisfied do
4 Set A+ = Non-dominated Selection(Arc) and A− = Arc\A+;
5 Construct a classifier [l,md+] = fuzzy classifier construction(x) by

using A+ and A−;
6 Validate the accuracy of the classifier Accuracy = k-fold(Arc);
7 Set Qp = ∅;
8 Mating P = P ;
9 while w < wmax do

10 Generate 2N offspring solutions Q = {y1, · · · , y2N} by using
Mating P ;

11 Sort the offspring solutions Q = IFCS Sorting(Q,Accuracy);
12 Select the top N solutions Qtop from Q;
13 Qp = Qp ∪Qtop;
14 Mating P = Qtop;
15 w = w + 1;
16 end
17 Sort all solutions in Qp by Qp = IFCS Sorting(Qp, Accuracy);
18 Select the top η solutions Qeval from Qp and evaluate them;
19 Arc = Arc ∪Qeval;
20 P = Environmental Selection(Arc,N);
21 end

3.1 Algorithm Framework

The framework of the proposed IFCS-MOEA is presented in Algorithm 1. It is
composed of four main procedures as follows.

– Initialization: N solutions are initialized and evaluated in Line 1. All the
evaluated solutions are collected in Arc in Line 2.

– Fuzzy classifier construction: All the solutions in the archive are used as
training data to construct a fuzzy classifier. The Pareto dominance relation is
used to define two classes of the training data in Line 4. The non-dominated
solutions are positive, and the dominated solutions are negative. A fuzzy
classifier is constructed in Line 5. This paper uses a Fuzzy-KNN classifier [20]
to construct the IFCS model. The fuzzy-KNN uses fuzzy similarity to predict
the class of each solution. When a fuzzy classifier is used to predict the quality
of a new solution, the class label l of the new solution and the membership
degree to each class are obtained. A membership degree indicates the degree
to the class which a new solution belongs to. A new solution’s membership
degree is calculated based on its K nearest neighbor’s membership degrees.
In this paper, we use the classifier to deal with the two-class problem. The
membership degree md+ in Line 5 is only for the positive class while the
membership degree for the negative class is 1−md+. md+ = 0.5 is used as
the classification boundary. If md+ ≥ 0.5, the solution is labeled as positive,
otherwise it is negative. The k-fold cross-validation method is applied to
validate the effectiveness of the classifier in Line 6. The accuracy of the
classifier is obtained.
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– Offspring generation: 2N offspring solutions are generated by using the mat-
ing population in Line 10. Next, the IFCS model is applied to sort the 2N
offspring solutions in Line 11. The top N promising offspring solutions are
selected and stored in Line 12. Then, these selected solutions are used as
mating solutions to generate new offspring solutions. This offspring genera-
tion process is repeated wmax times.

– New population generation: The IFCS model is used to sort all selected
wmax × N offspring solutions in Line 17. The top η solutions are selected
and evaluated by the objective functions in Line 18. The archive is updated
by using the newly evaluated solutions in Line 19. Finally, the environmental
selection mechanism of an MOEA is used to select N solutions from Arc to
form the new population for the next generation in Line 20.

3.2 IFCS-based Sorting

After the fuzzy classifier is constructed, the k-fold cross-validation method is
used to measure the reliability of the classifier. The mean accuracy (Accuracy)
of the classifier is obtained after the validation. In our algorithm framework, we
use k = 10 for experiments.

As mentioned in Section 3.1, for a solution, if its membership degree with
respect to the positive class is md+ ≥ 0.5, the solution is classified as a positive
solution by the classifier with small uncertainty. When the 0 ≤ md+ < 0.5, the
solution is classified as a negative solution with small uncertainty. When the
md+ value is close to 0.5, the classification result has a large uncertainty in the
class prediction.

Based on the above considerations, we propose an IFCS-based sorting strat-
egy to sort solutions based on the model accuracy and membership degrees.
The details of the proposed IFCS-based sorting strategy are presented in Algo-
rithm 2. The constructed fuzzy classifier is used to predict the label l and the
membership degree md+ (with respect to the positive class) of each solution in
Q (Line 1). These solutions are ranked in different manners according to the
accuracy of the classifier and the membership degree to the positive class.

Fig. 1 plots the accuracy of the fuzzy classifier at each generation through
the execution of IFCS-MOEA/D-DE on UF8 and LZ5 test problems with the
median IGD values over 21 runs. The two figures show that the accuracy of
the model is low at the beginning of optimization. The accuracy will increase
along with the increase of generations. The reason is that since the size of the
training data set is small in early generations, the model constructed by using
these data cannot approach the true relation among solutions and is hard to
make correct predictions. After several generations, the size of the training data
set increases, the model can approach the true relation among solutions and the
accuracy of the prediction increases. For this reason, we consider the following
three cases according to the model accuracy. We specify the threshold values as
30% and 70% since the accuracy of the model is usually larger than 70% in our
experiments as shown in Fig. 1.
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Algorithm 2: Q = IFCS Sorting(Q,Accuracy)

1 Predict the label and membership degree of each solution in Q by
[l,md+] = fuzzy classifier prediction(y);

2 if Accuracy ≥ 70% then
3 Sort solutions in Q with respect to their membership degrees in

descending order;
4 else if 30% ≤ Accuracy < 70% then
5 Qp = {y ∈ Q|l = 1};
6 Qn = {y ∈ Q|l ̸= 1};
7 Sort solutions in Qp with respect to their membership degrees in

ascending order;
8 Sort solutions in Qn with respect to their membership degrees in

descending order;
9 Q = Qp ∪Qn, the solutions in Qp are ranked before the solutions in Qn;

10 else
11 Sort solutions in Q with respect to their membership degrees in ascending

order;
12 end
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Fig. 1. The accuracy versus generation obtained by IFCS-MOEA/D-DE on UF8 and
LZ5 with the median IGD values over 21 runs.

– Accuracy ≥ 70%: The unevaluated solutions are ranked in descending order
with respect to md+ values. This is because the model accuracy is high and
we can trust the predictions of the classifier.

– 30% ≤ Accuracy < 70%: First, positive solutions are ranked in ascending
order with respect to md+ values. This is because the model is more uncer-
tain for the prediction of a solution with a smaller md+ value than that with
a larger md+ value for the positive class. Evaluating uncertain solutions can
improve the model accuracy (after evaluation, these solutions will be added
to training data). Next, negative solutions are ranked in descending order
with respect to md+ values. This is because the model is more uncertain
for the prediction of the solution with a larger md+ value than that with
a smaller md+ value for the negative class. Then, the positive solutions are
ranked before the negative solutions.

– Accuracy < 30%: The unevaluated solutions are ranked in ascending order
with respect to md+ values. This is because the model accuracy is too small
and we cannot trust the predictions of the classifier.
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Table 2. Example of four unevaluated solutions.

s1 s2 s3 s4
Label predicted by the classifier 0 1 1 0
Membership degree with respect to the
positive class (md+)

0.4 0.9 0.6 0.1

For example, suppose we have four solutions in Q as shown in Table 2. Each
solution has a label and a membership degree with respect to the positive class
predicted by the classifier. When the accuracy of the classifier is larger than or
equal to 70%, these solutions are ranked in descending order with respect to their
membership degrees (i.e., s2 > s3 > s1 > s4). When the accuracy of the classifier
is larger than or equal to 30% and smaller than 70%, the positive solutions
are ranked in ascending order with respect to their membership degrees (i.e.,
s3 > s2). Next, the negative solutions are ranked in descending order with respect
to their membership degrees (i.e., s1 > s4). Then, the positive solutions are
ranked before the negative solutions (i.e., s3 > s2 > s1 > s4). When the accuracy
of the classifier is smaller than 30%, these solutions are ranked in ascending order
with respect to their membership degrees (i.e., s4 > s1 > s3 > s2).

4 Experiments

This section examines the effectiveness of the proposed IFCS-MOEA frame-
work. First, Section 4.1 presents the experimental settings. Second, Section 4.2
examines the effect of IFCS on MOEA/D-DE. Then, Section 4.3 compares the
performance of IFCS-MOEA/D-DE with five state-of-the-art MOEAs on 19 test
problems. Finally, Section 4.4 compares the performance of IFCS-MOEA/D-DE
with five state-of-the-art MOEAs on four real-world application problems.

4.1 Experimental Settings

MOEA/D-DE [23] is integrated with the proposed framework for experiments,
and the resulting algorithm is named IFCS-MOEA/D-DE. Five surrogate-based
MOEAs, i.e., FCS-MOEA/D-DE [39], CPS-MOEA [41], CSEA [29], MOEA/D-
EGO [43] and EDN-ARM-OEA [12] are used for comparison. UF1–10, LZ1–9 test
problems [44, 23] with complicated PSs are used for experiments. Among them,
UF1–7, LZ1–5, and LZ7–9 have 2 objectives, UF8–10, and LZ6 have 3 objectives.
UF1–10, LZ1–5, and LZ9 are with 30 decision variables, and LZ6–8 are with 10
decision variables. The population sizeN is set to 45 for all compared algorithms.
The maximum number of FEs is set as 500 since the problems are viewed as
expensive MOPs [39]. For each test problem, each algorithm is executed 21 times
independently. For IFCS-MOEA/D-DE, wmax is set to 30 and η is set to 5. For
the other algorithms, we use the settings suggested in their papers. The IGD [6]
metric is used to evaluate the performance of each algorithm. All algorithms are
examined on PlatEMO [34] platform.
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Table 3. The meanstd IGD values of IFCS-MOEA/D-DE and MOEA/D-DE on UF1–
10 and LZ1–9.

IFCS-MOEA/D-DE MOEA/D-DE

UF1 8.87e-011.03e−01 1.04e+001.48e−01(−)

UF2 1.88e-012.87e−02 2.17e-011.90e−02(−)

UF3 6.04e-012.57e−02 6.51e-014.11e−02(−)

UF4 1.32e-016.34e−03 1.37e-017.67e−03(∼)

UF5 4.20e+003.67e−01 4.49e+003.60e−01(−)

UF6 3.78e+005.72e−01 4.52e+004.10e−01(−)

UF7 9.50e-011.11e−01 1.11e+001.21e−01(−)

UF8 7.24e-019.32e−02 7.93e-011.34e−01(∼)

UF9 7.57e-018.23e−02 8.99e-019.73e−02(−)

UF10 4.65e+004.34e−01 5.10e+006.81e−01(−)

LZ1 1.55e-018.70e−03 1.71e-011.75e−02(−)

LZ2 8.99e-011.69e−01 1.07e+001.54e−01(−)

LZ3 2.22e-011.45e−02 2.61e-012.37e−02(−)

LZ4 2.15e-012.08e−02 2.61e-012.59e−02(−)

LZ5 2.00e-012.53e−02 2.21e-011.97e−02(−)

LZ6 4.92e-014.56e−02 5.74e-011.17e−01(−)

LZ7 1.02e+003.52e−01 1.30e+002.39e−01(−)

LZ8 8.33e-011.23e−01 8.94e-011.14e−01(∼)

LZ9 9.52e-011.43e−01 1.08e+001.22e−01(−)

+/− / ∼ 0/16/3

4.2 Effect of IFCS on MOEA/D-DE

This section examines the effectiveness of IFCS-MOEA framework on MOE-
A/D-DE. IFCS-MOEA is embedded with MOEA/D-DE (IFCS-MOEA/D-DE)
and compared with the original MOEA/D-DE on UF1–10 and LZ1–9 test prob-
lems.

Table 3 shows the mean IGD values obtained by IFCS-MOEA/D-DE and
MOEA/D-DE after 500 FEs on the 19 test problems. The Wilcoxon rank-sum
test at the 5% significance level is used to evaluate the statistical difference
between IFCS-MOEA/D-DE and MOEA/D-DE. In this table, “+,−,∼” denote
that the results obtained by MOEA/D-DE are better than, worse than, or similar
to those obtained by IFCS-MOEA/D-DE, respectively. Table 3 shows that IFCS-
MOEA/D-DE outperforms MOEA/D-DE on 16 test problems. On UF4, UF8,
and LZ8, the two algorithms obtain similar results.

Figure 2 plots the mean IGD versus the number of FEs obtained by IFCS-
MOEA/D-DE and MOEA/D-DE on the UF2, UF10, and LZ7 test problems.
Figure 2 shows that IFCS-MOEA/D-DE converges faster and obtains better
IGD values than MOEA/D-DE on these three test problems.

Based on the above results, we can conclude that IFCS-MOEA/D-DE is
more efficient than MOEA/D-DE in solving these 19 MOPs with complicated
PSs under a limited number of FEs.

4.3 Performance Comparison with the State-of-the-art MOEAs

This section compares the performance of IFCS-MOEA/D-DE with five state-
of-the-art surrogate-based MOEAs: FCS-MOEA/D-DE, CPS-MOEA, CSEA,
MOEA/D-EGO, and EDN-ARMOEA. These algorithms are compared on the
UF1–10 and LZ1–9 test problems.
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Fig. 2. The mean IGD values versus the number of FEs obtained by IFCS-MOEA/D-
DE and MOEA/D-DE on UF2, UF10, and LZ7.

Table 4 presents the mean IGD values obtained by the six algorithms af-
ter 500 FEs on the 19 test problems. The Wilcoxon rank-sum test is used for
statistical test. The best result on each test problem is shaded. At the bottom
of the table, we summarize the number of problems on which the performance
of the compared algorithm is better than, worse than, and similar to that of
IFCS-MOEA/D-DE, respectively. In Table 4, IFCS-MOEA/D-DE outperforms
FCS-MOEA/D-DE, CPS-MOEA, CSEA, MOEA/D-EGO, and EDN-ARMOEA
on 9, 16, 11, 15, and 12 test problems, respectively. IFCS-MOEA/D-DE per-
forms worse than FCS-MOEA/D-DE, CPS-MOEA, CSEA, MOEA/D-EGO, and
EDN-ARMOEA on 6, 0, 6, 0, and 0 test problems, respectively.

Table 4. The mean IGD values of IFCS-MOEA/D-DE, FCS-MOEA/D-DE, CPS-
MOEA, CSEA, MOEA/D-EGO, and EDN-ARMOEA on UF1–10 and LZ1–9.

IFCS-MOEA/D-DE FCS-MOEA/D-DE CPS-MOEA CSEA MOEA/D-EGO EDN-ARMOEA

UF1 8.87e-011.03e−01 5.73e-011.70e−01(+) 1.05e+001.56e−01(−) 5.98e-012.16e−01(+) 9.40e-011.68e−01(∼) 9.68e-011.69e−01(−)

UF2 1.88e-012.87e−02 3.04e-014.55e−02(−) 3.00e-013.73e−02(−) 3.26e-015.30e−02(−) 4.09e-015.39e−02(−) 4.12e-013.71e−02(−)

UF3 6.04e-012.57e−02 6.91e-015.89e−02(−) 7.30e-016.35e−02(−) 7.11e-017.26e−02(−) 7.63e-017.43e−02(−) 7.27e-015.08e−02(−)

UF4 1.32e-016.34e−03 1.70e-017.55e−03(−) 1.47e-016.80e−03(−) 1.59e-018.22e−03(−) 1.52e-018.43e−03(−) 1.72e-014.21e−03(−)

UF5 4.20e+003.67e−01 3.00e+004.19e−01(+) 4.49e+003.64e−01(−) 2.91e+005.98e−01(+) 4.90e+003.84e−01(−) 4.53e+003.80e−01(−)

UF6 3.78e+005.72e−01 2.48e+008.10e−01(+) 4.27e+006.09e−01(−) 1.79e+006.32e−01(+) 4.31e+008.82e−01(−) 4.03e+007.69e−01(∼)

UF7 9.50e-011.11e−01 6.03e-011.51e−01(+) 1.03e+001.75e−01(−) 4.21e-011.04e−01(+) 1.08e+001.88e−01(−) 1.06e+002.20e−01(∼)

UF8 7.24e-019.32e−02 1.35e+003.77e−01(−) 1.43e+002.03e−01(−) 1.40e+003.25e−01(−) 1.62e+003.32e−01(−) 1.93e+002.12e−01(−)

UF9 7.57e-018.23e−02 1.33e+002.04e−01(−) 1.38e+002.92e−01(−) 1.40e+002.99e−01(−) 1.87e+006.32e−01(−) 1.81e+002.13e−01(−)

UF10 4.65e+004.34e−01 7.13e+001.10e+00(−) 8.06e+001.20e+00(−) 7.93e+001.45e+00(−) 8.78e+001.40e+00(−) 9.72e+001.25e+00(−)

LZ1 1.55e-018.70e−03 1.59e-011.07e−02(∼) 1.52e-011.29e−02(∼) 1.62e-011.75e−02(∼) 1.75e-011.56e−02(−) 1.61e-011.41e−02(∼)

LZ2 8.99e-011.69e−01 5.54e-011.41e−01(+) 1.03e+001.31e−01(−) 4.92e-012.21e−01(+) 1.05e+001.90e−01(−) 9.98e-011.61e−01(∼)

LZ3 2.22e-011.45e−02 3.53e-014.84e−02(−) 3.49e-012.87e−02(−) 3.45e-016.22e−02(−) 4.46e-016.09e−02(−) 4.46e-013.44e−02(−)

LZ4 2.15e-012.08e−02 3.51e-015.51e−02(−) 3.40e-014.16e−02(−) 3.41e-014.85e−02(−) 4.24e-017.09e−02(−) 4.41e-014.02e−02(−)

LZ5 2.00e-012.53e−02 3.07e-014.22e−02(−) 3.10e-013.57e−02(−) 3.01e-014.34e−02(−) 4.20e-017.43e−02(−) 4.17e-014.52e−02(−)

LZ6 4.92e-014.56e−02 5.46e-011.50e−01(∼) 8.54e-012.24e−01(−) 6.32e-011.82e−01(−) 5.25e-018.00e−02(∼) 5.32e-011.07e−01(∼)

LZ7 1.02e+003.52e−01 8.12e-012.57e−01(∼) 1.52e+005.86e−01(−) 9.44e-012.66e−01(∼) 1.49e+005.47e−01(−) 1.50e+002.13e−01(−)

LZ8 8.33e-011.23e−01 7.54e-012.02e−01(∼) 8.82e-013.10e−01(∼) 9.71e-011.72e−01(−) 7.85e-012.73e−01(∼) 8.77e-018.86e−02(∼)

LZ9 9.52e-011.43e−01 5.78e-011.78e−01(+) 1.01e+001.37e−01(∼) 4.96e-011.57e−01(+) 9.46e-011.83e−01(∼) 9.50e-012.18e−01(∼)

+/− / ∼ 6/9/4 0/16/3 6/11/2 0/15/4 0/12/7

Figure 3 plots the non-dominated solutions obtained by IFCS-MOEA/D-DE,
FCS-MOEA/D-DE, CPS-MOEA, CSEA, MOEA/D-EGO, and EDN-ARMOEA
on UF2. For each algorithm, we choose a single run with the median IGD value
over 21 runs. In this figure, the solutions obtained by each algorithm are shown
by red circles and the PF is shown by a black curve. This figure shows that
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Fig. 3. The non-dominated solutions obtained by the five compared algorithms on UF2
with the median IGD value.

the solutions obtained by IFCS-MOEA/D-DE are closer to the PF than the
solutions obtained by other five algorithms. The above results show that IFCS-
MOEA/D-DE outperforms the five compared algorithms on most test problems.
Therefore, we can conclude that IFCS-MOEA/D-DE is efficient in solving MOPs
with complicated PSs.

4.4 Performance Comparison on Real-World Problems

This section compares the performance of IFCS-MOEA/D-DE and the five state-
of-the-art MOEAs on four real-world MOPs [32]: reinforced concrete beam design
problem (RCBD), pressure vessel design problem (PVD), coil compression spring
design problem (CCSD), and gear train design problem (GTD). The first three
MOPs have 2 objectives and the last one MOP have 3 objectives. Due to the
page limit, readers can refer to [32] for the details of these real-world MOPs. In
the experiments, the population size is N = 45. The maximal number of FEs is
500. Each algorithm executes 21 times on each test problem.

Table 5 shows the mean IGD values obtained by the five compared algo-
rithms. The best result on each test problem is shaded. At the bottom of the
table, we summarize the number of problems on which the performance of the
compared algorithm is better than, worse than, and similar to that of IFCS-
MOEA/D-DE, respectively. In Table 5, IFCS-MOEA/D-DE outperforms all the
other algorithms on all test problems except for one case: there is no statis-
tically significant difference between IFCS-MOEA/D-DE and EDN-ARMOEA
on the GTD problem whereas the best average IGD value is obtained by IFCS-
MOEA/D-DE. From the above results, we can conclude that the proposed IFCS-
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Table 5. The mean IGD values of IFCS-MOEA/D-DE, FCS-MOEA/D-DE, CPS-
MOEA, CSEA, MOEA/D-EGO, and EDN-ARMOEA on four real-world problems.

IFCS-MOEA/D-DE FCS-MOEA/D-DE CPS-MOEA CSEA MOEA/D-EGO EDN-ARMOEA

RCBD 1.26e-027.25e−03 3.09e-022.07e−02(−) 1.68e-023.09e−03(−) 2.80e-027.70e−03(−) 7.83e-023.14e−02(−) 1.89e-026.17e−03(−)

PVD 2.61e-028.53e−03 6.95e-026.66e−02(−) 1.27e-011.34e−01(−) 9.62e-023.75e−02(−) 1.16e-015.48e−02(−) 6.96e-023.52e−02(−)

CCSD 5.11e-033.80e−03 9.25e-029.78e−02(−) 3.74e-023.60e−02(−) 1.23e-017.78e−02(−) 1.78e-011.17e−01(−) 8.13e-028.42e−02(−)

GTD 5.15e-021.28e−02 1.23e-011.15e−01(−) 8.34e-023.41e−02(−) 1.56e-016.79e−02(−) 1.50e-016.07e−02(−) 9.17e-027.25e−02(∼)

+/− / ∼ 0/4/0 0/4/0 0/4/0 0/4/0 0/3/1

MOEA/D-DE algorithms outperforms the five state-of-the-art MOEAs in solv-
ing these real-world application problems under a limited number of FEs.

5 Conclusion

This paper proposed an improved fuzzy classifier-based multiobjective evolution-
ary algorithm framework (IFCS-MOEA) for expensive MOPs. The IFCS-MOEA
framework was developed based on an improved fuzzy classifier-based surrogate
model. The IFCS model is used to sort unevaluated solutions based on the mem-
bership degrees and the model accuracy. Then, the promising offspring solutions
are selected for function evaluations based on the sorting results. All the evalu-
ated solutions are used for fuzzy classifier construction.

The proposed IFCS-MOEA framework was embedded with MOEA/D-DE
for examination. The Fuzzy-KNN was used as the fuzzy classifier. The 10-fold
cross-validation method was used to validate the quality of the classifier. IFCS-
MOEA/D-DE was compared with the original MOEA/D-DE. The experimen-
tal results validated the effectiveness of IFCS in improving the performance of
MOEA/D-DE on solving expensive MOPs under a limited number of FEs. Then,
IFCS-MOEA/D-DE was compared with five state-of-the-art MOEAs on 19 test
problems and four real-world application problems. The experimental results
showed that IFCS-MOEA/D-DE outperformed the other five MOEAs in solving
these problems under a limited number of FEs.

This paper validated the effectiveness of the IFCS-MOEA framework by em-
bedding it with MOEA/D-DE. It is a future research topic to examine the ef-
fectiveness of IFCS-MOEA by embedding it with other MOEAs. It is also in-
teresting to examine the performance of IFCS-MOEA/D-DE on other MOPs
with complicated PSs. This paper used 30% and 70% as the accuracy threshold
values in the proposed sorting strategy according to our preliminary results. It
is necessary to further examine these threshold values on more test problems.
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