
HVC-Net: Deep Learning based Hypervolume
Contribution Approximation

Ke Shang, Weiduo Liao, and Hisao Ishibuchi?

Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,
Department of Computer Science and Engineering,

Southern University of Science and Technology, Shenzhen, China
kshang@foxmail.com, {liaowd@mail.,hisao@}sustech.edu.cn

Abstract. In this paper, we propose HVC-Net, a deep learning based
hypervolume contribution approximation method for evolutionary multi-
objective optimization. The basic idea of HVC-Net is to use a deep neural
network to approximate the hypervolume contribution of each solution in
a non-dominated solution set. HVC-Net has two characteristics: (1) It is
permutation equivalent to the order of solutions in the input solution set,
and (2) a single HVC-Net can handle solution sets of various size (e.g., so-
lution sets with 20, 50 and 100 solutions). The performance of HVC-Net
is evaluated through computational experiments by comparing it with
two commonly-used hypervolume contribution approximation methods
(i.e., point-based method and line-based method). Our experimental re-
sults show that HVC-Net outperforms the other two methods in terms
of both the runtime and the ability to identify the smallest (largest) hy-
pervolume contributor in a solution set, which shows the superiority of
HVC-Net for hypervolume contribution approximation.

Keywords: Hypervolume contribution · Approximation · Evolutionary
multi-objective optimization · Deep learning.

1 Introduction

Hypervolume [15, 11] is a popular performance indicator in the field of evolution-
ary multi-objective optimization (EMO). It possesses rich theoretical properties
(e.g., Pareto compliance [16], submodularity [13]), which make it attractive to
use in practice. For example, it has been used to design EMO algorithms (e.g.,
SMS-EMOA [6, 2]) and subset selection algorithms (e.g., greedy hypervolume
subset selection [7, 4]).

In SMS-EMOA, the population evolves in a steady-state manner. In each
generation, one offspring is generated and added to the population, then one so-
lution is removed from the population so that the hypervolume of the remaining
population is maximized. In greedy hypervolume subset selection, in each step,
one solution is selected from a candidate set and added to the subset so that the
hypervolume of the subset is maximized. In these two cases, in order to remove
? Corresponding author.

admin
文本框
This paper has been published in Proceeding of International Conference on Parallel Problem Solving from Nature, 2022.

2 K. Shang et al.

(select) the correct solution, we need to calculate the hypervolume contribution
of each solution. Hypervolume contribution is an important concept which de-
scribes the amount of hypervolume contributed by one solution to a solution set.
In SMS-EMOA, we need to identify the solution with the smallest hypervolume
contribution to the population. In greedy hypervolume subset selection, we need
to identify the solution with the largest hypervolume contribution to the subset.

However, the calculation of the hypervolume contribution is #P-hard [3],
which limits its applicability in many-objective optimization. In order to over-
come this drawback, some hypervolume contribution approximation methods
have been proposed [1, 12, 5]. Two representative methods are the point-based
method [1] and the line-based method [12]. The point-based method is also
known as the Monte Carlo sampling method. In this method, in order to ap-
proximate the hypervolume contribution of a solution, a sampling space is firstly
determined. After that, a large number of samples are uniformly drawn in the
sampling space to do the approximation. The line-based method is also known
as the R2 indicator variant. In this method, a large number of line segments are
uniformly drawn in the hypervolume contribution region of a solution to do the
approximation.

In this paper, we propose a new hypervolume contribution approximation
method. The proposed method, named HVC-Net, uses a deep neural network to
do the approximation. The input of HVC-Net is a non-dominated solution set,
and the output of HVC-Net is the approximated hypervolume contribution of
each solution in the input solution set. HVC-Net has two characteristics. One is
that it is permutation equivalent [14]. That is, a change of the order of solutions
in the input solution set will cause the same change of the order of the outputs
(i.e., the same results are obtained for any permutation of solutions in the input
solution set). The other is that it can handle solution sets of different size (e.g.,
20, 50, 100 solutions). That is, a single HVC-Net is trained using solution sets of
various size. These two characteristics guarantee high applicability of HVC-Net
for hypervolume contribution approximation.

The rest of this paper is organized as follows. Section 2 presents the prelimi-
naries of the study. Section 3 introduces a new hypervolume contribution approx-
imation method, HVC-Net. Section 4 conducts experimental studies. Section 5
concludes the paper.

2 Preliminaries

In this section, we present the preliminaries of this paper, including the defi-
nitions of hypervolume and hypervolume contribution, and two representative
hypervolume contribution approximation methods.

2.1 Hypervolume and Hypervolume Contribution

Hypervolume The hypervolume is a widely used performance indicator in the
field of evolutionary multi-objective optimization. Formally, for a solution set S

HVC-Net: Deep Learning based HVC Approximation 3

in the objective space, the hypervolume of S is defined as

HV (S, r) = L

(⋃
s∈S
{s′|s ≺ s′ ≺ r}

)
, (1)

where L(·) is the Lebesgue measure of a set, r is a reference point which is
dominated by all solutions in S, and s ≺ s′ denotes that s dominates s′ (i.e.,
si ≤ s′i for all i = 1, ...,m and sj < s′j for at least one j = 1, ...,m in the
minimization case, where m is the number of objectives).

Fig. 1 (a) gives an illustration of the hypervolume of a solution set {a1,a2,a3}
in a two-dimensional objective space, where each objective is to be minimized.

Hypervolume Contribution The hypervolume contribution is an important
concept based on the hypervolume indicator. It describes the amount of the
hypevolume value contributed by a solution to the solution set. Formally, for a
solution s ∈ S, the hypervolume contribution of s to S is defined as

HV C(s, S, r) = HV (S, r)−HV (S \ {s}, r). (2)

Fig. 1 (b) gives an illustration of the hypervolume contribution of each solu-
tion to the solution set {a1,a2,a3}.

min	 𝑓1

m
in
	𝑓

2

0

𝐚!

𝐫

𝐚"

𝐚#

(a) Hypervolume

min	 𝑓1

m
in
	𝑓

2

0

𝐚!

𝐫

𝐚"

𝐚#

(b) Hypervolume Contribution

Fig. 1. Illustrations of the hypervolume and the hypervolume contribution. The shaded
area in (a) is the hypervolume of the solution set {a1,a2,a3}, and each shaded area in
(b) is the hypervolume contribution of the corresponding solution to the solution set
{a1,a2,a3}.

2.2 Hypervolume Contribution Approximation

Two representative hypervolume contribution approximation methods are the
point-based method and the line-based method. These two methods are briefly
explained as follows.

4 K. Shang et al.

Point-based Method The point-based method is also known as the Monte
Carlo sampling method [1]. Fig. 2 (a) illustrates this method. The basic idea is
as follows. To approximate the hypervolume contribution of a solution s ∈ S, a
sampling space (i.e., a hyperrectangle) which contains s’s hypervolume contri-
bution region is firstly determined (e.g., the rectangle bounded by a2 and p in
Fig. 2 (a)). Then a large number of samples are uniformly drawn in the sampling
space (e.g., k samples). Suppose there are k′ samples uniquely dominated by s
(e.g., the red samples in Fig. 2 (a)), then the hypervolume contribution of s is
approximated as

HV C(s, S, r) ≈ k′

k
V, (3)

where V is the volume of the sampling space (i.e., the hyperrectangle).
In practice, the sampling space should be as tight as possible. In [1], the

tightest sampling space is theoretically derived. The lower bound of the sampling
space is the solution itself (e.g., a2 in Fig. 2 (a)). The upper bound (e.g., p in
Fig. 2 (a)) is determined as follows:

pi = min {s′i|s′ ∈ S \ {s} and s′ ≺i s} , i = 1, ...,m, (4)

where s′ ≺i s denotes that s′ dominates s in all but the ith objective.
Therefore, the tightest sampling space in Fig. 2 (a) is exactly the hypervolume

contribution region of a2 (i.e., p = (a31, a
1
2)). We did not put p exactly at position

(a31, a
1
2) (i.e., the red point) in Fig. 2 (a) for easy illustration.

min	 𝑓1

m
in
	𝑓

2

0

𝐚!

𝐫

𝐚"
𝐚#

+
- -- -

-
-+ +++

+
+ +

+ +
++

𝐩

(a) Point-based method
min	 %1

mi
n	
% 2

0

()

*

(+
(,

(b) Line-based method

Fig. 2. Illustrations of the point-based and line-based methods for hypervolume con-
tribution approximation.

Line-based Method The line-based method is also known as the R2 indica-
tor variant [12]. Fig. 2 (b) illustrates this method. The basic idea is as follows.
To approximate the hypervolume contribution of a solution s ∈ S, a set of line
segments starting from s and with different directions are drawn in its hyper-
volume contribution region. Suppose there are n line segments and the length
of each line segment is li, i = 1, ..., n, then the hypervolume contribution of s is

HVC-Net: Deep Learning based HVC Approximation 5

approximated as

HV C(s, S, r) ≈ 1

n

n∑
i=1

(li)
m, (5)

where m is the number of objectives.
The directions of the line segments can be defined using a direction vector

set Λ = {λ1, ...,λn} where each direction vector satisfies
∥∥λi∥∥

2
= 1, λij ≥ 0,

i = 1, ..., n, j = 1, ...,m. The length of each line segment can be calculated as

li = min

{
min

s′∈S\{s}

{
g*2tch(s′|λi, s)

}
, gmtch(r|λi, s)

}
, i = 1, ..., n, (6)

where g*2tch(·)1 and gmtch(·) are defined as follows:

g*2tch(s′|λi, s) = max
j∈{1,...,m}

{
s′j − sj
λij

}
, (7)

gmtch(r|λi, s) = min
j∈{1,...,m}

{
|sj − rj |
λij

}
. (8)

3 HVC-Net

Motivated by DeepSets [14], which is a deep neural network for dealing with a set
as its input, we design HVC-Net to approximate the hypervolume contribution
of each solution in a solution set. The architecture of HVC-Net is shown in Fig.
3. The input of HVC-Net is a non-dominated solution set S = {s1, s2, ..., sN}.
The output of HVC-Net is the hypervolume contribution approximation of each
solution in S. The working mechanism of HVC-Net can be described in the
following three steps.

– Step 1: Each of N solutions si (i = 1, ..., N) is presented to the network φ
and transformed to ai = φ(si).

– Step 2: N vectors ai are averaged as one vector b = 1
N

∑N
i=1 a

i. Vector b
is further presented to network η and transformed to c = η(b). Vector c is
added to each of N vectors ai and N vectors di = c+ ai are obtained.

– Step 3: Each of N vectors di is presented to network ρ and N outputs
H̃V Cθ(s

i, S, r) = ρ(di) are obtained, where θ is the parameter vector of
HVC-Net.

It should be noted that Step 2 can be stacked multiple times (i.e., K) as
shown in Fig. 3. Step 2 is used to learn the relation between a solution and the
whole solution set. The two main characteristics of HVC-Net are as follows:
1 The g*2tch(·) function defined in Eq. (7) is used in minimization case. For maxi-
mization case, s′j and sj should be swapped in Eq. (7). Please refer to [12] for more
detailed explanations.

6 K. Shang et al.

	𝔼𝜙

𝑆

𝐬!
𝐬"
⋱

𝜌
𝐻𝑉𝐶&𝜽(𝐬",𝑆, 𝐫)
𝐻𝑉𝐶&𝜽(𝐬# ,𝑆, 𝐫)

⋱
𝜂

×𝐾

	+
𝐛 𝐜

𝐚!
𝐚"
⋱

𝐝!
𝐝"
⋱

Fig. 3. The architecture of HVC-Net.

1. It is permutation equivalent. That is, for any permutation π of the in-
put solutions (i.e., S = {sπ(1), ..., sπ(N)}), the outputs of HVC-Net are
H̃V Cθ(s

π(1), S, r), ..., H̃V Cθ(s
π(N), S, r). This means that the approximated

hypervolume contribution value for each solution is not affected by the order
of the input solutions. This is because the change of the order of the input
solutions will lead to the change of the order of the approximated values
consistently. This characteristic guarantees the robustness of HVC-Net.

2. A single HVC-Net can handle solution sets of various size. For example, we
can use a trained HVC-Net to handle a solution set with 10 solutions. We
can also use the same HVC-Net to handle a solution set with 100 solutions.
This characteristic guarantees high applicability of HVC-Net.

3.1 How to Train HVC-Net

In HVC-Net, we implicitly assume the minimization case where the reference
point for hypervolume contribution calculation is set to r = (1, ..., 1) and all
solutions in S are located in [0, 1]m. For the training of HVC-Net, we prepare
the training data as follows. First, we prepare L non-dominated solution sets
{S1, S2, ..., SL} where each solution set is located in [0, 1]m. Then, we calculate
the hypervolume contribution of each solution in each solution set based on the
reference point r = (1, ..., 1). That is, we obtain the target output HV C(si, Sj , r)
for each solution si ∈ Sj (i = 1, ..., |Sj |, j = 1, ..., L).

Based on the training data (i.e., the pairs of the solution sets and the cor-
responding hypervolume contributions), we define the loss function of HVC-Net
as follows:

L(θ) = 1

L

L∑
j=1

1

|Sj |

|Sj |∑
i=1

(
log H̃V Cθ(s

i, Sj , r)− logHV C(si, Sj , r)
)2
. (9)

The loss function defined in Eq. (9) is similar to the mean squared error
(MSE) loss function. The only difference is that we add log function to the
hypervolume contribution (approximation) values. This is because the hypervol-
ume contribution values are usually very small (e.g., in the magnitude of 10−4).
Using log values can make the training easier and better. More details about the
training of HVC-Net are described in Section 4.1.

HVC-Net: Deep Learning based HVC Approximation 7

3.2 How to Use HVC-Net

After we train a HVC-Net, we can use it to approximate the hypervolume contri-
bution if the solution set is in [0, 1]m and the reference point is r = (1, ..., 1). The
question is how to use it for hypervolume contribution approximation when the
solution set and the reference point are both arbitrarily given. Before answering
this question, we need the following properties.

Property 1. For any positive vector α ∈ Rm>0, HV C(s, S, r) =
1∏m

i=1 αi
HV C(α�

s,α� S,α� r), where � denotes the element-wise multiplication2.

Property 2. For any real vector β ∈ Rm, HV C(s, S, r) = HV C(s+β, S+β, r+
β).

Property 3. HV C(s, S, r) = HV C(−s,−S,−r) where HV C(−s,−S,−r) is cal-
culated for maximization problems whereas HV C(s, S, r) is calculated for min-
imization problems.

The above three properties can be easily obtained from the properties of the
hypervolume indicator obtained in [10]. Based on these properties, we can first
transform the solution set and the reference point so that the reference point
is r = (1, ..., 1) and the solution set is located in [0, 1]m. Then we use HVC-
Net to approximate the hypervolume contribution for the transformed solution
set. Lastly, we calculate the hypervolume contribution approximation for the
original solution set based on the output of HVC-Net. The last step is not needed
when our task is to find the solution with the smallest or largest hypervolume
contribution in a solution set.

Thus, although HVC-Net is trained based on solution sets in [0, 1]m and
reference point r = (1, ..., 1), it can be used for any solution set with any reference
point.

4 Experiments

In this section, we conduct computational experiments to examine the perfor-
mance of HVC-Net by comparing it with the point-based and line-based methods
for hypervolume contribution approximation.

4.1 Experimental Settings

HVC-Net Specifications In HVC-Net in Fig. 3, three networks φ, η, and
ρ need to be specified. In our experiments, all three networks are specified as
feedforward neural networks. Fig. 4 shows the structures of φ, η, and ρ used in
our experiments. All the networks have three hidden layers. In the hidden layers
of the three networks, we use ReLU activation function for efficient training.
2 For two vectors a = (a1, ..., am) and b = (b1, ..., bm), a�b = (a1b1, ..., ambm). For a
set B, a�B means a� b for all b ∈ B.

8 K. Shang et al.

In the output layer of network ρ, we use Sigmoid activation function since the
hypervolume contribution values are in [0, 1] for the training solution sets. In
HVC-Net, Step 2 can be stackedK times as shown in Fig. 3. In our experiments,
we set K = 10. That is, we have 10 different η networks in HVC-Net.

…

… … … …

Hidden layers (128) Output layer (128)Input layer (𝑚)

ReLU ReLU ReLU

(a) Network φ
… … … …

Hidden layers (128) Output layer (128)Input layer (128)

ReLU ReLU ReLU

…

(b) Network η

… … … …
Hidden layers (128) Output layer (1)Input layer (128)

ReLU ReLU ReLU Sigmoid

(c) Network ρ

Fig. 4. Networks φ, η, and ρ in HVC-Net. The number in the parentheses indicates the
number of neurons in each layer. The activation function used in each layer is shown
under each layer.

Training and Testing Data Generation We examine 5, 8, and 10-objective
cases (i.e.,m = 5, 8, 10). We generate training data with L solution sets {S1, ..., SL}
for each case where L = 1, 000, 000. Each solution set is generated using the fol-
lowing procedure:
– Step 1: Randomly sample an integer num ∈ [1, 100] where num denotes the

number of solutions in the solution set.
– Step 2: Randomly sample 1000 solutions in [0, 1]m as candidate solutions.
– Step 3: Apply non-dominated sorting to these 1000 solutions and obtain

different fronts {F1, ..., Fl} where F1 is the first front (i.e., the set of non-
dominated solutions in the 1000 solutions) and Fl is the last front.

– Step 4: Identify all the fronts Fi with |Fi| ≥ num. If no front satisfies this
condition, go back to Step 2.

– Step 5: Randomly pick one front Fi with |Fi| ≥ num and randomly select
num solutions from this front to construct one solution set.

This procedure is used in order to select a wide variety of non-dominated
solution sets for training. On average, about 10,000 solution sets with the same
size are generated (1,000,000 solution sets in total for 100 different sizes).

HVC-Net: Deep Learning based HVC Approximation 9

We generate two types of testing solution sets. Type-I testing solution sets
are generated using exactly the same procedure as described above. We generate
10,000 Type-I testing solution sets for each case (i.e., m = 5, 8, 10). These 10,000
solution sets form one group. We generate 10 different groups of Type-I testing
solution sets for each case of m. Type-II testing solution sets are generated using
a similar procedure. The only difference is that an integer num ∈ [101, 200] is
randomly sampled in Step 1 and 10,000 solutions are randomly sampled in Step 2.
We generate 10,000 Type-II testing solution sets for each case ofm. These 10,000
solution sets form one group. We generate 10 different groups of Type-II for each
case of m. Type-II testing solution sets are used to test the generalization ability
of HVC-Net since we train HVC-Net using solution sets with 1-100 solutions and
test HVC-Net using solution sets with 101-200 solutions.

Parameter Settings For the training of HVC-Net, we use Adam [8], an ef-
fective gradient-based optimization method with an adaptive learning rate. The
initial learning rate is set to 10−4. For all the other parameters in Adam, we use
their default settings in PyTorch [9]. The batch size during training is set to 100.
The number of epochs for training is set to 100.

For the number of sampling points in the point-based method, we examine 20
different settings: 5, 10, ..., 100. For the number of lines in the line-based method,
we examine 20 different settings: 5, 10, ..., 100. We use the unit normal vector
method [5] to generate the direction vector set Λ in the line-based method.

Performance Metrics To compare the performance of different hypervol-
ume contribution approximation methods, we use the correct identification rate
(CIR). CIR is a metric which can evaluate the ability of a method to identify
the smallest (largest) hypervolume contributor in a solution set. For example,
suppose we have P solution sets. If a method can correctly identify the small-
est (largest) hypervolume contributor for Q out of P solution sets, then CIR is
calculated as Q/P . In our experiments, we use CIRmin (i.e., CIR for identifying
the smallest hypervolume contributor) and CIRmax (i.e., CIR for identifying the
largest hypervolume contributor). A larger CIR value means better approxima-
tion quality of a method.

We also record the runtime of the three methods to compare their efficiency.
Here the runtime of HVC-Net means its evaluation time on the testing solution
sets, not the training time.

Platforms All the methods are coded in Python and tested on a server with
Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz, GeForce RTX 2080 GPU, and
Ubuntu 18.04.6 LTS. HVC-Net is implemented based on PyTorch version 1.9.0.

4.2 The Training of HVC-Net

Fig. 5 shows the training curve of HVC-Net in each case of m. We can see that
the loss decreases sharply in the first 20 epochs. This is mainly because we use

10 K. Shang et al.

a batch size of 100 for training 1M solutions, which means that the parameters
of HVC-Net can be updated 10K times in each epoch. We can also observe that
the loss becomes very small at the end of the training process in each figure,
which shows the success of the training of HVC-Net.

(a) 5-objective (b) 8-objective (c) 10-objective

Fig. 5. The training curve of HVC-Net in each case.

Table 1 shows the time used for training HVC-Net. Although the training of
HVC-Net needs quite a substantial time, the trained HVC-Net models can be
saved and are ready to use at any time. That is, once we obtain a well trained
HVC-Net model, we can save it and use it directly in the future without spending
a lot of time to retrain it.

Table 1. The time (GPU hours) used for training HVC-Net in each case.

5-objective 8-objective 10-objective

369.13 370.47 383.79

Next, we will examine the performance of our trained HVC-Net models on
the testing solution sets.

4.3 Testing on Type-I Solution Sets

We apply the three hypervolume contribution approximation methods to Type-I
testing solution sets, i.e., solution sets with 1-100 solutions. For fair comparison,
all the methods are tested on CPU. That is, we disable GPU when using HVC-
Net for evaluation.

Fig. 6 shows the results of CIRmin and CIRmax for each case. We can see that
HVC-Net clearly dominates the other two methods in most cases in terms of both
the correct identification rate and the runtime, which shows the advantage of
using HVC-Net for identifying the smallest (largest) hypervolume contributor in
a solution set. It is worth noting that the point-based and line-based methods are
very time-consuming compared with HVC-Net. HVC-Net is able to process the
testing solution sets in less than 10 seconds and achieves a good CIR value. The

HVC-Net: Deep Learning based HVC Approximation 11

(a) 5-objective (b) 8-objective (c) 10-objective

(d) 5-objective (e) 8-objective (f) 10-objective

Fig. 6. Experimental results of the three hypervolume contribution approximation
methods on Type-I testing solution sets in each case. The runtime (in seconds) means
the total time for evaluating 10,000 testing solution sets. The CIR (CIRmin in (a)-(c)
and CIRmax in (d)-(f)) means the correct identification rate over 10,000 testing solution
sets. All the results are the average over 10 groups of Type-I testing solution sets.

other two methods even perform worse (i.e., a smaller CIR value) than HVC-
Net by consuming 1000 seconds. Of course, the other two methods can achieve
better CIR values than HVC-Net using more points or lines in some cases (e.g.,
in Fig. 6 (a) the other two methods achieve better CIR values than HVC-Net
by consuming more than 1000 seconds). However, the runtime cost is too high
to realize this goal for the point-based and line-based methods.

4.4 Testing on Type-II Solution Sets

We also apply the three hypervolume contribution approximation methods to
Type-II testing solution sets, i.e., solution sets with 101-200 solutions. We use
Type-II testing solution sets to examine the generalization ability of HVC-Net.

Fig. 7 shows the results of CIRmin and CIRmax for each case. We can ob-
serve that HVC-Net performs well in general. It can still dominate the other
two methods in terms of the correct identification rate and the runtime in most
cases. There is almost no runtime increase for HVC-Net compared with the re-
sults on Type-I solution sets. However, there is a significant runtime increase for
the point-based and line-based methods. These results show the strong gener-
alization ability and the efficiency of HVC-Net. Although HVC-Net is trained
using solution sets with 1-100 solutions, it is able to handle solution sets with
101-200 solutions effectively and efficiently.

12 K. Shang et al.

(a) 5-objective (b) 8-objective (c) 10-objective

(d) 5-objective (e) 8-objective (f) 10-objective

Fig. 7. Experimental results of the three hypervolume contribution approximation
methods on Type-II testing solution sets in each case. The runtime (in seconds) means
the total time for evaluating 10,000 testing solution sets. The CIR (CIRmin in (a)-(c)
and CIRmax in (d)-(f)) means the correct identification rate over 10,000 testing solution
sets. All the results are the average over 10 groups of Type-II testing solution sets.

5 Conclusions

In this paper, we proposed HVC-Net, a deep learning based method for hypervol-
ume contribution approximation. We compared HVC-Net with the point-based
method and the line-based method. The experimental results showed that HVC-
Net outperformed the other two methods in terms of both the correct identifi-
cation rate and the runtime, which showed the potential of using deep learning
technique for hypervolume contribution approximation.

Our future work is the development of a hypervolume-based EMO algorithm
and a hypervolume subset selection algorithm based on HVC-Net for many-
objective optimization. Of course, we will also try to further improve the per-
formance of HVC-Net by improving its structure, parameter settings, training
method, and so on.

All the source codes and the trained HVC-Net models are available at
https://github.com/HisaoLabSUSTC/HVC-Net.

Acknowledgements This work was supported by National Natural Science Founda-
tion of China (Grant No. 62002152, 61876075), Guangdong Provincial Key Laboratory
(Grant No. 2020B121201001), the Program for Guangdong Introducing Innovative and
Enterpreneurial Teams (Grant No. 2017ZT07X386), The Stable Support Plan Program
of Shenzhen Natural Science Fund (Grant No. 20200925174447003), Shenzhen Science
and Technology Program (Grant No. KQTD2016112514355531).

HVC-Net: Deep Learning based HVC Approximation 13

References

1. Bader, J., Deb, K., Zitzler, E.: Faster hypervolume-based search using Monte Carlo
sampling. In: Multiple Criteria Decision Making for Sustainable Energy and Trans-
portation Systems, pp. 313–326. Springer (2010)

2. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection
based on dominated hypervolume. European Journal of Operational Research
181(3), 1653–1669 (2007)

3. Bringmann, K., Friedrich, T.: Approximating the least hypervolume contributor:
NP-hard in general, but fast in practice. In: International Conference on Evolu-
tionary Multi-Criterion Optimization. pp. 6–20. Springer (2009)

4. Chen, W., Ishibuchi, H., Shang, K.: Fast greedy subset selection from large candi-
date solution sets in evolutionary multi-objective optimization. IEEE Transactions
on Evolutionary Computation (Early Access)

5. Deng, J., Zhang, Q.: Approximating hypervolume and hypervolume contributions
using polar coordinate. IEEE Transactions on Evolutionary Computation 23(5),
913–918 (2019)

6. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume
measure as selection criterion. In: International Conference on Evolutionary Multi-
Criterion Optimization. pp. 62–76 (2005)

7. Guerreiro, A.P., Fonseca, C.M., Paquete, L.: Greedy hypervolume subset selection
in low dimensions. Evolutionary Computation 24(3), 521–544 (2016)

8. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

9. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. Advances in Neural Information Processing Sys-
tems 32, 8026–8037 (2019)

10. Shang, K., Chen, W., Liao, W., Ishibuchi, H.: HV-Net: Hypervolume approxima-
tion based on deepsets. IEEE Transactions on Evolutionary Computation (Early
Access)

11. Shang, K., Ishibuchi, H., He, L., Pang, L.M.: A survey on the hypervolume indicator
in evolutionary multiobjective optimization. IEEE Transactions on Evolutionary
Computation 25(1), 1–20 (2021)

12. Shang, K., Ishibuchi, H., Ni, X.: R2-based hypervolume contribution approxima-
tion. IEEE Transactions on Evolutionary Computation 24(1), 185–192 (2020)

13. Ulrich, T., Thiele, L.: Bounding the effectiveness of hypervolume-based (µ+ λ)-
archiving algorithms. In: International Conference on Learning and Intelligent Op-
timization. pp. 235–249. Springer (2012)

14. Zaheer, M., Kottur, S., Ravanbhakhsh, S., Póczos, B., Salakhutdinov, R., Smola,
A.J.: Deep Sets. Advances in Neural Information Processing Systems pp. 3394–3404
(2017)

15. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., da Fonseca, V.: Performance
assessment of multiobjective optimizers: an analysis and review. IEEE Transactions
on Evolutionary Computation 7(2), 117–132 (2003)

16. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: On the
design of Pareto-compliant indicators via weighted integration. In: International
Conference on Evolutionary Multi-Criterion Optimization. pp. 862–876. Springer
(2007)

