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Abstract. Many real-world multi-modal multi-objective optimization
problems are subject to continuously changing environments, which re-
quires the optimizer to track multiple equivalent Pareto sets in the de-
cision space. To the best of our knowledge, this type of optimization
problems has not been studied in the literature. To fill the research gap
in this area, we provide a preliminary study on dynamic multi-modal
multi-objective optimization. We give a formal definition of dynamic
multi-modal multi-objective optimization problems and point out some
key challenges in solving them. To facilitate algorithm development, we
suggest a systematic approach to construct benchmark problems. Fur-
thermore, we provide a feature-rich test suite containing 10 novel dy-
namic multi-modal multi-objective test problems.
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1 Introduction

ver the past few years, multi-modal multi-objective optimization problems

O (MMOPs) have received increasing attention from researchers and rapidly
become a popular research area. This special class of multi-objective optimiza-
tion problems is characterized by having multiple equivalent Pareto sets in the
decision space. As pointed out in [4], equivalent Pareto sets are useful in prac-
tical applications since they can provide extra flexibility in the decision-making
procedure. Thus, in addition to ensuring a good solution distribution over the
Pareto front, a multi-modal multi-objective optimization algorithm is also re-
quired to ensure the diversity in the decision space to cover as many equivalent
Pareto sets as possible. Various real-world optimization problems such as the
rocket engine design problems [24], the neural architecture search problems [26],
and the multi-objective knapsack problems [I3] can be formulated as MMOPs.
Recently, many efficient algorithms have emerged to solve MMOPs efficiently,
e.g., algorithms in [7IT6II827]. However, up to now, the algorithm research on
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multi-modal multi-objective optimization has tended to focus on solving MMOPs
in static environments. This greatly limits the value of these algorithms in real-
world applications, where the environment in which the optimization problem
is posed is often dynamically changing. Due to the dynamic environment, the
Pareto front and/or the Pareto set of an MMOP may change over time. For
example, it is not uncommon that a rocket engine design obtained by the above-
mentioned approach [24] is no longer viable due to the change of some physical
constraints. In this case, instead of simply restarting the algorithm to search
for a new solution, it would be more efficient to utilize the original Pareto op-
timal solutions (i.e., the Pareto optimal solutions obtained before the change
of the environment). In this paper, we refer to this type of optimization prob-
lems as dynamic MMOPs (dMMOPs). From the previous example, we can see
that AMMOPs are essentially equivalent to solving a series of MMOPs, which
can be viewed as an extension of dynamic multi-objective optimization problems
(AMOPs) [§]. Therefore, existing techniques for handling dMOPs are also helpful
for AMMOPs.

This paper provides a preliminary study on dMMOPs. We first give a formal
definition of AMMOPs and analyze some key challenges in solving them. Being
a novel type of optimization problems, dMMOPs pose unprecedented challenges
to algorithm designers. To facilitate algorithm development, we provide a sys-
tematic approach for constructing dMMOPs for benchmarking the algorithm
performance. Furthermore, we suggest an easy-to-use test suite containing 10
novel test problems based on the proposed approach.

2 Related Work

2.1 Multi-modal Multi-objective Optimization

In Section [I} we explained that MMOPs have multiple equivalent Pareto sets
in the decision space. In our previous work [2I], we provided a more precise
definition for MMOPs. Furthermore, we pointed out that the main challenge
in solving MMOPs comes from the need for the algorithm to maintain the di-
versity of populations in both the decision and objective spaces. One strategy
is to select solutions with good diversity in both the decision and objective
spaces in environmental selection. For example, both Omni-optimizer [7] and
MO_Ring PSO_SCD [27] use modified crowding distance [5] metrics which con-
sider the diversity in both spaces. Another popular approach is to use niching
[25] mechanisms to “divide” the population into several niches, each of which
evolves independently. In this manner, solutions in different niches can converge
to different Pareto sets. For example, MMOEA-DC [16] partitions the popula-
tion into several clusters, DNEA [I7] adopts the fitness sharing strategy [10],
MOEA/D-MM [20] uses the clearing strategy [22].
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2.2 Dynamic Multi-objective Optimization

A basic AMOP can be defined by introducing a time variable ¢ into a standard
multi-objective optimization problem as follows:

min F(x) = (f1(x,t), fa(x,1),. . .,fM(:c,t))T,

s. t. g(x,t) <0,h(x,t) =0, 1)

where F, g, and h are dynamic (i.e., time-dependent) objective functions, in-
equality constraints, and equality constraints, respectively.

As shown in , both the objective functions and the constraints may change
over time, which can lead to certain Pareto optimal solutions becoming subopti-
mal or infeasible. Therefore, the key to efficiently solving dMOPs is to sensitively
detect changes in the environment and quickly converge to the new Pareto set.

As suggested by Raquel et al. [23], dynamic multi-objective optimization
evolutionary algorithms (AMOEAS) for solving dMOPs can be broadly classified
into the following categories:

1. Diversity-based dMOEAs. This approach attempts to maintain and/or
enhance the diversity of the population in order to quickly detect and react to
environmental changes. In [6], Deb et al. proposed two NSGA-II [5] variants
called DNSGA-II-A and DNSGA-II-B based on this approach.

2. Memory-based dMOEAs. This approach attempts to store (i.e., mem-
orize) historical Pareto optimal solutions for reusing them in the future.
This type of algorithms is particularly efficient for AMOPs with periodical
changes. Representatives in this category include the algorithms proposed in
1/14j.

3. [Pre(]iiction-based dMOEASs. This approach aims to train a model to pre-
dict the movement of the Pareto set of a dMOP based on historical data.
The main advantage of this approach is that the algorithm can react to the
change proactively (i.e., it can take action in advance). This enables the al-
gorithm to swiftly converge to the new Pareto set. However, the performance
of prediction-based algorithms largely depends on the accuracy of prediction
models. State-of-the-art prediction-based algorithms include MOEA /D-SVR
[2] and PPS [15].

4. Multi-population dMOEAs. Multi-population-based algorithms explore
the search space with multiple subpopulations. Ideally, multiple subpopula-
tions can explore different regions of the search space simultaneously. In this
manner, the algorithm can be more sensitive to environmental changes and
locate new promising regions in the search space quickly. dCOEA [9] and
VEPSO [11] are two well-known multiple-population algorithms for solving
dMOPs.

3 Dynamic Multi-modal Multi-objective Optimization

In order to define dMMOPs, we first need to introduce the multi-modal property.
Suppose that an objective function vector F' defines a multi-objective optimiza-
tion problem whose Pareto set is S, we say that F' is a multi-modal function if
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and only if the following condition is met:
Jxi, x5 € 5, s. t. x] # x5 and F(x]) = F(z3), (2)

where x} and «} are called equivalent Pareto optimal solutions [20].
Now we can formally define AMMOPs as follows:

Definition 1 (dMMOP). A dMMOP is a dMOP with multi-modal objective
functions.

Due to the multi-modal property, the optimization goal of dAMMOPs is to
track all the equivalent Pareto sets in the decision space. Compared to dMOPs,
which require the optimizer to track only one Pareto set, AIMMOPs pose more
difficult challenges to algorithm designers.

First, dAMMOPs require the optimizer to manage multiple “subpopulations”
for tracking multiple equivalent Pareto sets which may locate in different regions
in the decision space. This strategy improves the diversification ability of the
optimizer at the cost of reducing its convergence ability. Thus, balancing this
trade-off is essential for solving dMMOPs. Second, the time series of multiple
equivalent Pareto sets may interfere with each other, making it very difficult
for the optimizer to identify them correctly. Fig. [I] gives an example showing a
dMMOP with two equivalent Pareto sets whose centers are denoted by A and B,
respectively. Suppose that at time ¢, A and B move to A" and B’, respectively.
As shown in Fig. [1] (a), the actual time series from ¢t — 1 to ¢t are A — A’ and
B — B’. However, as shown in Fig. [1] (b), an optimizer (e.g., a prediction-based
dMOEA) may obtain incorrect time series, i.e., A — B’ and B — A’. In this
case, the algorithm may have a very poor performance.

X2 A X2 A

(a) The actual time series. (b) The incorrect time series.

Fig. 1: Illustration of the difficulty of time series identification when handling
dMMOPs.

Furthermore, detecting environmental changes when handling dMMOPs can
also be a difficult task. Most existing dynamic multi-objective optimization algo-
rithms detect changes by re-evaluating solutions. However, this strategy may fail
when handling dMMOPs. For example, suppose that there is a dAMMOP with
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three equivalent Pareto sets. If a population obtained by an algorithm is only
distributed on two of the three Pareto sets, then the algorithm cannot detect
the change of the remaining Pareto set by simply re-evaluating the population.

Based on the above discussions, we can see that AMMOPs are very different
from standard the dMOPs. Aside from addressing the above-mentioned issues,
we also need novel test problems with various characteristics to facilitate the de-
velopment of efficient algorithms for solving AMMOPs. Thus, in the next section,
we suggest a systematic approach for constructing benchmark dMMOPs.

4 A Systematic Approach for Constructing dMMOPs

In this section, we propose a general approach for constructing dMMOPs. Our
proposed approach is capable of constructing scalable and flexible test problems
with various dynamics.
To construct a AMMOP, we first define a basic dMOP denoted by G as
follows:
Minimize G(z,t) = {g1(x, 1), g2(x, 1), ..., gm(z, 1)}, (3)

where M is the number of objectives, = (z1, 22, ... ,xp)T is the decision vari-
able vector with p dimensions, and g; > 0 (j = 1,2,..., M) are M objective
functions to be minimized.

By carefully specifying the objective functions, we can ensure that the Pareto
front of the problem G changes dynamically whereas its Pareto set is stationary.
The reason for this is explained later. We denote the Pareto front and Pareto
set PF(G,t) and PS(G), respectively.

Now we construct the desired dMMOP denoted by F' as follows:

MinimizeF(:l:,yJ)Z(f17f2,...,fM)T7 (4)
fj = gj(wvt) : [1 + h(wvyat)]aj = 172,~ .. 7Ma

where y = (y1,2,...,Y,)" is a decision variable vector with ¢ dimensions, and
h(x,y,t) > 01is a dynamic scalar function regarding two decision variable vectors

x and y which satisfy the following constraint at any time ¢:

Va* € PS(G),Jy =y~
s. t. h(z",y*,t) = 0.

()

With the above formulations, we can describe the Pareto set of the problem
F as follows:

PS(Ft)={x=x"y=y" | " € PS(G), h(z",y*,t) =0}. (6)

Notice that when h = 0, the problem F' is equivalent to G, i.e., their Pareto
fronts are the same. This means that the geometry and dynamics of the Pareto
front of the problem F only depend on g; (j =1,2,...,M). Recall that when we
constructed G, we purposefully made its Pareto set stationary over time. From
@, we can see that the dynamics of the Pareto set can only be controlled by h.



6 Yiming Peng, Hisao Ishibuchi

Thus, the dynamics for the Pareto front and the Pareto set of the constructed
dMMOP can be controlled independently (i.e., by specifying g; and h functions,
respectively). This enables researchers to construct various new test problems by
composing different dynamics for the Pareto front and Pareto set. Furthermore,
according to @, F' has multiple equivalent Pareto sets when A is a multi-modal
function at time ¢ (i.e., h(x,y,t) = 0 holds for different values of « and y). Thus,
by altering the number and positions of the global and local optima of h, we can
easily specify the number and distribution of the global and local Pareto sets of
F', respectively.

To conclude, the proposed approach can construct scalable dAMMOPs with
an arbitrary number of decision variables and objective functions. The number
of equivalent Pareto sets is also scalable. The proposed approach also allows us
to set different dynamics for the Pareto front and Pareto set, thus making it
possible to build flexible and sophisticated test problems according to the needs
of algorithm designers.

4.1 Case Study on An Example Test Problem

In this section, we use a simple example with only two decision variables x and
y to demonstrate how to create a novel AMMOP using our proposed framework.
The first step is to define the base dMOP denoted by G.. We use the

z = (z),z €[0.1,1],
g1(x,t) =z, (7)
1
go(x,t) = — + 5cos?(0.57t).
T
Then we can construct a dMMOP denoted by dAMMOP1 based on G. In our

current example, we use the following function h to control the dynamics and
geometry of the Pareto set:

y = (y),y € [0,10],

h(:c,y,t)z\/|y—1|~|y—D(t)|, (8>
D(t) = 1 + 2sin*(0.27t).

Since h has two optima (i.e., y = 1 and y = D(¢)), dMMOP1 has two equivalent
Pareto sets, one of which varies dynamically over time while the other remains
stationary. Notice that when D(t) = 1, the two equivalent Pareto sets are over-
lapping. The Pareto set and Pareto front of dAMMOP1 are described in @D and
illustrated in Fig.

PS:ze0.1,1.1],y € {1,D(t)},

1 9
PF : gy = 0 + 5cos?(0.57t), g1 € [0.1,1.1]. )
1
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(a) The Pareto front. (b) The Pareto set.

Fig.2: The Pareto front and Pareto set of AMMOP1. (a) shows the Pareto front
sampled from ten ¢ values vary from 0 to 1. (b) shows the corresponding Pareto
sets, where PS™ and PS® denote the first and second equivalent Pareto sets,
respectively.

To the best of our knowledge, there are no test problems similar to dM-
MOP1 in the literature. We further investigate the performance of two algo-
rithms, namely, DNSGA-II-A [6] and MMO-MOES [29] on this test problem.
DNSGA-II-A is a diversity-based algorithm for solving dMOPs. It randomly se-
lects and re-evaluates 10% of the population in each generation. If the objective
values of any of the solutions have changed, 30% of the population are randomly
re-initialized. However, since DNSGA-II-A does not take into account the multi-
modal property, we expect it to obtain only one of the two equivalent Pareto
sets of AIMMOP1. In contrast, MMO-MOES is an algorithm designed for solving
MMOPs in static environments. To make it possible to handle dMMOPs, we
incorporate the same change detection and change response mechanisms used in
DNSGA-II-A into MMO-MOES. We call the resulting algorithm dMMO-MOES.

We use the mean values of the IGD [3] and IGDX [30] indicators (denoted by
MIGD and MIGDX, respectively) to measure the performance in tracking the
moving Pareto front and Pareto set, respectively. Smaller IGD and IGDX values
mean that the obtained solutions can better approximate the Pareto front and
the Pareto set, respectively.

The time unit ¢ for AIMMOP1 can be calculated with , which is modified

from [19).

1 T —1To
t= —|1 0 10
max{ntL + - J, }, ( )

t

where:

— 7 is the current generation counter,

— 7o is the number of generations that the optimization problem remains sta-
tionary before the first change,

— ny is the number of distinct time steps in one time unit, which controls the
severity of the dynamic change, and
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— 74 is the number of generations where ¢ remains unchanged, which controls
the frequency of the dynamic change.

For each algorithm, the population size is 200, and other parameters are set
as the suggested values in the corresponding papers [6)29]. For AMMOP1, 7o,
T¢, and n; are specified as 50, 20, and 10, respectively. Each algorithm is tested
on dMMOP1 for 31 runs with the maximum number of generations being set to
7o + 1007 (i.e., each run comprises 100 environmental changes).

Fig. 3] and Fig. [ report the results obtained from a single run with the
median MIGD value among 31 runs of each algorithm. From Fig. |3| (a), we can
observe that both DNSGA-II-A and AMMO-MOES can track the moving Pareto
front. Although these two algorithms use exactly the same change detection and
change response mechanisms, DNSGA-II-A clearly outperforms dMMO-MOES
regarding the IGD indicator (i.e., the IGD values obtained by DNSGA-II are
smaller). DNSGA-II-A not only has more stable performance but also converges
faster to the new Pareto front when environmental changes occur.

—e—DNSGA-II-A
——dMMO-MOES

(a) IGD. (b) IGDX.

Fig.3: The change of IGD and IGDX values obtained by DNSGA-II-A and
dMMO-MOES on dMMOP1 over 100 environmental changes.

However, in Fig. [3| (b), IMMO-MOES significantly outperforms DNSGA-II-
A in terms of IGDX. This is because DNSGA-II can obtain solutions only in
one of the two equivalent Pareto subsets. Therefore, as the distance between the
two equivalent Pareto sets increases (e.g., ¢ increases from 0 to 2.5), the IGDX
value obtained by DNSGA-II-A also increases. Similarly, when ¢ = 0,5, 10, the
IGDX values obtained by DNSGA-II-A are the best since the two equivalent
Pareto sets of AMMOP1 are overlapping. As shown in Fig. [3| (b), the IGDX
values of AMMO-MOES are much smaller than that of DNSGA-II-A over the
100 environmental changes. These observations indicate that dAMMO-MOES is
more capable of tracking multiple Pareto sets than DNSGA-II-A.

Fig. M shows the populations obtained by DNSGA-II-A and dMMO-MOES
when ¢ equals to 2.5, 3.5 and 5 in the decision space. From this figure, we can
verify that DNSGA-II-A obtained solutions only in one of the two equivalent
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Pareto sets, whereas dAMMO-MOES can track both of them. It is worth noting
that Fig. 4| (e) and Fig. 4] (f) also reveal that the convergence ability of dAMMO-
MOES is noticeably weaker than DNSGA-II-A since many solutions are not on
the Pareto sets.

T T
(a) t =2.5 (b)t=35 (c)t=5
3 3 3 o
2.5 250 € 250 8
Bt o5 6P o5 0000 @00 &6 H 8
2 2t ° 2
B = >
15 15 15 o
1 1 1
0.5 0.5 0.5
02 04 06 08 1 12 02 04 06 08 1 12 02 04 06 08 1 12
xT x T
(d) t =2.5. (e) t = 3.5. (f) t = 5.

Fig.4: The populations obtained by DNSGA-II-A (i.e., (a)-(c)) and dMMO-
MOES (i.e., (d)-(f)) on dAMMOP1 when ¢ equals to 2.5, 3.5 and 5.

From these experimental results, we can see that existing algorithms do not
perform well on dMMOPs. Novel algorithms are needed in order to efficiently
solve this novel type of optimization problems.

5 A Suggested Test Suite

In this section, we provide a novel test suite 10 AMMOPs with various dynamics.
All test problems are constructed based on the proposed approach presented in
Section [4] Definitions of the proposed dMMOPs are summarized in Table
Notice that we omit the definition of dMMOP1 in Table [I] since it has already
been defined in Section F1l

Here we briefly describe some main characteristics of each test problem. De-
tails of each test problem are shown in the supplementary file E First, dIMMOP2
features a Pareto front whose shape changes periodically from convex to linear
and then to concave. It has two stationary equivalent Pareto sets in the de-
cision space. dAMMOP3 is the same as AMMOP2 except that its h function is

! The supplementary file can be found at |https://github.com/
Yiming-Peng-0fficial/dMMOP
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Table 1: The proposed dMMOP test suite.
Problem | Definition ‘ Pareto Set
dMMOP1 - -
@ = (z1.22)7  21.0 € [0, 1],
91(m, t) = [cos (m/2wq) cos (/229)]1/ D 1),
92(wm, t) = [cos (m/2x1) sin (n/222)] 1/ P, @0 € [0,1],
dMMOP2 g3(x, 1) = [sin (/22 )11/ D(®) L
¥ = (), €[0,1], v=A7 7+
h(z,y,t) =1 — sin2(27ry),
D(t) = 0.25 + 0.75sin> (7 /12t).

Same as AMMOP2, except that h is defined as follows: z1.5 € [0, 1],
dMMOP3 h(m,y,t) =1 —exp [ = (459:2)%] — 0.8exp [~ (X552 y =0.2.
dMMOP4 Add a minus sign to all objectives of dMMOP2. Same as dAMMOP2.

x = (z),z € [0, 1],
g1(z, t) =z,
go(xe,t) =1 — 20052(D(t)1'7r), All x_xon-dom_iua.ted
dMMOP5 v=(.vel-1.1], e e
h(z,y,t) =1 — exp [,(M)Z] R g1 € [0,1].
0.4
D(t) = 5sin2(0.27¢).
z = (2), = € [0, 1],
g1(z, t) = =, oe(2D(t ) z € [0,1],y € [0, 4],
g, t) =1 — o — SOS@DM)matm/2) 2%2;’;"’/ ), y = sin |27 — x| + |272 — 7|
dMMOP6 y = (y),y € [0,9], and
h(m,y 1) = 20 —sin|2me — x| 4 |27e —xD?, oy € [0, 4] = €01y e (@9l
AT Y Z 2y — 4 — sin |2ne — w| + 270 — w]), y € (4,9]| ¥ = sin |27z — 7| + |27 — 7| + 4.
D(t) = 0.1 + 5sin2(0.27t).
@=(e1,29)7 @12 € [0, 1],
g1 = 0.5+ D(t) - (z1 — 0.5),
=1 —-=z2)(1—g1),
Zi = a5(1 725,1), o y = S(t)sin(rzy), x1:2 € [0, 1]
dMMOPT7 D(t) = cos2(0.2xt), and §
y = (y),y € [0,1], y = S(t)sin(mzy) + 512 € [0, 1].
h(z,y,t) =1 — sin? (27r(y — S(t)sin(mzy) + 1)),
4
S(t) = 0.5 cos>(0.27t).
xz = (x),z € [0, 1],
g1(®, t) ==, )
0.5+ 2i
{gz(w,t)zlfﬁ, ze€[0,1],y =
dMMOP8 y = (y),y € [0,1], b
i =20,1,2,
h(x,y,t) =1 — sin(D(t)7y),
D(t) = 1+ 9sin2(0.27¢).
x = (z),z € [1,3],
g1(z, t) = |z — 2|, y € [1,2),
g2(z,t) =1 — |z — 2], y = sin(2D(t)w|a — 2| + )
dMMOP9 y=(y),y € [-1,1]. and
h(m, y, ) = {2<y —sin(2D(O)wly — 2| + ™))%, v € [1,2) v € [2,3],
e 2(y — sin(27|y — 2| + 7)<, y € [2,3] y = sin(27|@ — 2| + 7).
D(t) = 1 + 4sin? (7 /2t)
@ = (z),x € [~0.5,0.5],
y = (y),y € [-0.5,0.5],
zr] _ [ cos O(t) —sin6O(t)
{yr} - [y} [sin 6(t) cos0O(t) @, € [—0.5,0.5],
dMMOP10 -, !
g1 = Tr, yr ={-—, -}
{92 =1/@r, 2

6
h(x,y,t) =1 — cos” (27ysr),

6(t) = 2m sin2(0.27t).
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modified to have a locally optimal Pareto front. AMMOP4 is another variant of
dMMOP2 which is constructed based on the idea proposed in [12]. By adding a
minus sign to all objective functions of AIMMOP2, the Pareto front of AIMMOP4
changes from a triangular shape to an inverted triangular shape. As pointed
out in [12], such a Pareto front shape is difficult for decomposition-based multi-
objective optimization algorithms. dMMOP5 is a test problem whose Pareto
set and Pareto front change from a continuous curve to multiple disconnected
segments over time. Furthermore, the number of disconnected Pareto set and
Pareto front segments also change dynamically. The AMMOPG6 test problem has
two equivalent Pareto sets which are the same as the MMFS8 test problem in
[28]. However, its Pareto front changes dynamically from a regular curve to a
mixed convex/concave curve. The number of knee points on the Pareto front
also changes dynamically over time. dAMMOPT has two equivalent Pareto sets,
each of which is a time-varying manifold with two dimensions. Its Pareto front is
a 2-dimensional plane that can degenerate into a line over time. The dMMOPS
test problem has a time-varying number of equivalent Pareto sets. AMMOP9 has
two equivalent Pareto sets, one of which changes its geometry over time, while
the other is always stationary. In AMMOP10, the equivalent Pareto sets rotate
clockwise around the origin as time changes. Since the centroid of the Pareto set
is always the origin, AMMOP10 is challenging for some dMOEAs that rely on
centroid-based prediction models (e.g., [15]).

In conclusion, the proposed dMMOP test suite provides test problems with
various characteristics, thus allowing researchers to evaluate the performance of
an algorithm with respect to a wide variety of aspects.

6 Concluding Remarks

In this paper, we introduced a novel type of optimization problem, namely, dM-
MOPs by extending MMOPs into dynamic environments. Furthermore, we gave
a formal definition for AMMOPs and analyzed some key challenges in solving
them. Since test problems are essential for algorithm development, we proposed
a general approach for constructing dMMOPs for benchmarks. In addition, we
provided a novel test suite containing 10 novel AMMOPs. We believe that these
test problems can help researchers to develop more efficient algorithms for solv-
ing real-world dMMOPs.

This paper only provides a preliminary study on dynamic multi-modal multi-
objective optimization, many potential research topics are left for future work.
For example, experimental results in Section [I.I]show that simply incorporating
an existing change response mechanism to multi-modal multi-objective optimiza-
tion algorithms (e.g., MMO-MOES in our experiments) does not yield satisfac-
tory results, and we still need more efficient algorithms to handle dAMMOPs in
the future.
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