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Abstract. Recently, an R2-based hypervolume contribution approxima-
tion (i.e., RHV C

2 indicator) has been proposed and applied to evolution-
ary multi-objective algorithms and subset selection. The RHV C

2 indicator
approximates the hypervolume contribution using a set of line segments
determined by a direction vector set. Although the RHV C

2 indicator is
computationally efficient compared with the exact hypervolume contri-
bution calculation, its approximation error is large if an inappropriate
direction vector set is used. In this paper, we propose a method to gen-
erate a direction vector set for reducing the approximation error of the
RHV C

2 indicator. The method generates a set of direction vectors by
selecting a small direction vector set from a large candidate direction
vector set in a greedy manner. Experimental results show that the pro-
posed method outperforms six existing direction vector set generation
methods. The direction vector set generated by the proposed method
can be further used to improve the performance of hypervolume-based
algorithms which rely on the RHV C

2 indicator.

Keywords: Evolutionary multi-objective optimization· Hypervolume con-
tribution · Hypervolume contribution approximation.

1 Introduction

In evolutionary multi-objective optimization (EMO), convergence and diver-
sity are two desired properties of a solution set. To address the conflicting na-
ture of the two properties, many indicators are proposed such as hypervolume
(HV) [31] [25], generational distance (GD) [28], inverted generational distance
(IGD) [5], and R2 [13]. These indicators are used not only for evaluating the
performance of evolutionary multi-objective optimization algorithms (EMOAs)
but also for designing EMOAs.

Hypervolume is one of the most widely used indicators in EMO since hyper-
volume is Pareto compliant [30]. Many EMOAs are based on the hypervolume
indicator such as SMS-EMOA [1, 11] and FV-EMOA [18]. In these algorithms,
hypervolume contribution plays an important role, which is the increment (or
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decrement) of the hypervolume of a solution set when a solution is added (or
removed). For example, SMS-EMOA discards the solution with the least hyper-
volume contribution from the population in each generation, so that the hyper-
volume of the remaining population is maximized. Hypervolume contribution
is also crucial in hypervolume subset selection (HSS), which aims to select a
subset with the maximum hypervolume from a candidate solution set. Greedy
HSS methods [2, 3, 12] usually select (or remove) the solution with the largest
(or least) hypervolume contribution iteratively.

One drawback of hypervolume-based algorithms is their expensive compu-
tational cost, especially in high-dimensional spaces. This is because the exact
calculation of hypervolume and hypervolume contribution is #P-hard [4]. To
decrease the computational cost, an R2-based hypervolume contribution approx-
imation method (i.e., RHV C

2 indicator) was proposed in [26]. Benefiting from the
RHV C

2 indicator, an efficient hypervolume-based algorithm R2HCA-EMOA was
proposed, which outperforms many state-of-the-art EMOAs on many-objective
problems [23]. The RHV C

2 indicator was also applied in a greedy approximate
HSS algorithm (i.e., GAHSS) whose computational cost is much lower than that
of greedy exact HSS algorithms [24].

The basic idea of the RHV C
2 indicator is to use different line segments to

approximate the hypervolume contribution. Therefore, a set of vectors is needed
to determine the directions of these line segments. Nan et al. [21] reported that
the performance of the RHV C

2 indicator highly depends on the distribution of
the used direction vectors, and uniformly distributed direction vectors are not
useful for the RHV C

2 indicator. However, currently available methods for direc-
tion vector set generation are not specially designed for the RHV C

2 indicator,
and some of them aim to obtain uniformly distributed direction vectors. As a
result, these methods are not suitable for the RHV C

2 indicator.

In this paper, we propose a direction vector set generation method called
the greedy approximation error selection (GAES). Specifically, we formulate the
direction vector set generation for the RHV C

2 indicator as a subset selection prob-
lem. The target is to minimize the approximation error of the RHV C

2 indicator,
which is defined by the average distance between the ranking of solutions based
on the hypervolume contribution and their ranking based on the RHV C

2 indica-
tor in a set of training solution sets. The proposed algorithm selects direction
vectors one by one from a large candidate direction vector set in a greedy man-
ner. Our experimental results show that the proposed method can achieve the
smallest approximation error and the highest correct identification rate among
seven direction vector set generation methods. The direction vector set gener-
ated by the proposed method can be further used to improve the performance of
hypervolume-based algorithms (e.g., GAHSS) which rely on the RHV C

2 indicator.

The rest of the paper is organized as follows: In Section 2, we briefly review
the hypervolume, the hypervolume contribution, the R2-based hypervolume con-
tribution, six direction vector set generation methods, and subset selection. We
propose a direction vector set generation method for the RHV C

2 indicator in Sec-
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tion 3. The performance of the proposed method is tested in Section 4. Finally,
in Section 5, the conclusion is given.

2 Background

2.1 Hypervolume and Hypervolume Contribution

Mathematically, the hypervolume indicator is defined as follows.

Definition 1. In the objective space Rm with a reference point r ∈ Rm, the
hypervolume of a solution set S ⊂ Rm is defined as

HV (S, r) = L

(⋃
s∈S

{a|s ⪰ a ⪰ r}

)
, (1)

where L(·) is the Lebesgue measure of a set, and s ⪰ a denotes s dominates a
(i.e., si ≤ ai ∀i ∈ {1, 2, ..,m} and sj < aj ∃j ∈ {1, 2, ...,m} in the minimization
case).

Based on the definition of the hypervolume, the hypervolume contribution is
defined as follows.

Definition 2. In the objective space Rm with a reference point r ∈ Rm, the
hypervolume contribution of a solution s ∈ Rm to a solution set S ⊂ Rm is
defined as

HV C(s, S, r) =

{
HV (S, r)−HV (S \ {s}, r), if s ∈ S,

HV (S ∪ {s}, r)−HV (S, r), if s /∈ S.
(2)

Fig. 1 (a) and (b) illustrate the hypervolume and the hypervolume contribu-
tion in the two-objective space.

2.2 R2-based Hypervolume Contribution Approximation

In [26], an R2-based indicator (i.e., RHV C
2 indicator) was proposed to approx-

imate the hypervolume contribution. Suppose we have a solution set S in the
m-dimensional objective space. To approximate the hypervolume contribution
of the solution s to S with the reference point r, the lengths of a set of line
segments are used. The length L of each line segment is determined by each
direction vector λ in a given direction vector set V , the solution set S \ {s} and
the reference point r. Mathematically,

RHV C
2 (s, S, r, V ) =

1

|V |
∑
λ∈V

L(s, S \ {s}, r,λ)m

=
1

|V |
∑
λ∈V

min

{
min

s′∈S\{s}
{g∗2tch(s′|λ, s)}, gmtch(r|λ, s)

}m

.

(3)

For minimization problems, the g∗2tch(s′|λ, s) function in Eq. (3) is defined as

g∗2tch(s′|λ, s) = max
j∈{1,2,...,m}

{
s
′
j−sj
λj

}
, and the gmtch(r|λ, s) function in Eq. (3)

is defined as gmtch(r|λ, s) = min
j∈{1,2,...,m}

{
|rj−sj |

λj

}
. The mechanism of the R2-

based hypervolume contribution approximation is illustrated in Fig. 1 (c).
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Fig. 1. Illustration of the hypervolume, the hypervolume contribution and the R2-
based hypervolume contribution approximation. The grey area in (a) is the hypervol-
ume of the solution set {s1, s2, s3}. Each grey area (1, 2 and 3) in (b) is the hyper-
volume contribution of the corresponding solution (s1, s2 and s3) to the solution set
{s1, s2, s3}, respectively. The red lines in (c) illustrate the mechanism of the R2-based
hypervolume contribution approximation.

2.3 Direction Vector Set Generation Methods

Six existing direction vector set generation methods are briefly explained. The
first three methods are space filling methods. Every generated weight vector w
is normalized to obtain the direction vector λ (i.e., λ = w

||w||2 ).

– Das and Dennis (DAS) method [6]: In the m-dimensional space, the
DAS method generates a weight vector w = (w1, w2, ..., wm) by uniformly
dividing each dimension into H parts. The value of wj is selected from

{0, 1
H , 2

H , ..., 1−
∑j−1

i=1 wi}. Totally, Cm−1
H+m−1 weight vectors are generated.

– Unit normal vector (UNV) method [10]: In the UNV method, a set of
weight vectors is randomly sampled from the m-dimensional normal distri-
bution (i.e., w ∼ Nm(0, Im)).

– JAS method [17]: The JAS method randomly generates a weight vector
w = (w1, w2, ..., wm) with the uniform probability distribution [17]. For k <

m, wk is sampled by wk = (1 −
∑k−1

j=1 wj)(1 − m−k
√
µ) where µ is randomly

sampled from [0, 1]. For the last dimension, wm = 1−
∑m−1

j=1 wj .

The other three methods select the desired direction vector set from a large
candidate direction vector set generated by one of the first three methods.

– Maximally spare selection method with DAS (MSS-D [7]): A large
candidate direction vector set U is generated by the DAS method. Then, m
extreme direction vectors (1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1) are selected
as the initial direction vector set V . The direction vector λ ∈ U with the
largest distance to the vector set V is selected (i.e., moved from U to V ).
This step repeats until V reaches the desired size.

– Maximally spare selection method with UNV (MSS-U [7]): The
only difference between MSS-U and MSS-D is that the candidate direction
vector set U in MSS-U is generated by UNV instead of DAS.
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– Kmeans-U [15]: The method starts with a large candidate direction vector
set U generated by the UNV method. Then the k-means clustering [20] is
used to obtain a direction vector subset V from U .

In Fig. 2, a direction vector set of size 91 is generated by each method, and the
size of the candidate direction vector set is 49,770 for the MSS-D, MSS-U and
Kmeans-U methods. In Fig. 2, the direction vector sets generated by the DAS,
MSS-D, MSS-U and Kmeans-U methods are more uniform than those generated
by the UNV and JAS methods.

𝑥𝑦

𝑧

(a) DAS

𝑥𝑦

𝑧

(b) UNV

𝑥𝑦

𝑧

(c) JAS

𝑥𝑦

𝑧

(d) MSS-D

𝑥𝑦

𝑧

(e) MSS-U

𝑥𝑦

𝑧

(f) Kmeans-U

Fig. 2. Illustration of the direction vector sets generated by the six methods outlined
in Section 2.3. Each direction vector set contains 91 direction vectors.

2.4 Subset Selection

Subset selection is to select a subset from a large candidate set to optimize
a given metric [22]. Formally, given a set U = {e1, e2, ..., eN}, a metric f (to
be maximized) and a positive integer k, subset selection aims to find a subset
V ⊆ U with |V | = k for maximizing f(V ). That is, V ∗ = argmaxV⊆U,|V |=kf(V ).
When the target is to minimize f(V ), the problem can be written as V ∗ =
argminV⊆U,|V |=kf(V ). To solve the subset selection problem, the greedy in-
clusion is a simple yet widely used method. For example, hypervolume subset
selection (HSS) aims to maximize the hypervolume of the selected solution sub-
set. The greedy inclusion for the HSS [3,12] selects the solution with the largest
hypervolume contribution iteratively.
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3 Proposed Method for Selecting Direction Vector Set

Since the performance of the RHV C
2 indicator strongly depends on the used di-

rection vector set, we propose a simple greedy inclusion algorithm called the
greedy approximation error selection (GAES) for obtaining a high-quality direc-
tion vector set for the RHV C

2 indicator, and analyze its time complexity.

3.1 Approximation Error

Equipped with a good direction vector set, the RHV C
2 indicator is supposed to

be consistent with the hypervolume contribution. That is, the approximation
error should be small. Usually, we are interested in the ranking of solutions
based on the hypervolume contribution values in hypervolume-based algorithms.
Therefore, we define the approximation error between the ranking based on the
hypervolume contribution and the ranking based on the RHV C

2 indicator. The
hypervolume contribution is calculated by the WFG algorithm [29], and the
RHV C

2 indicator is calculated by Eq. (3). Suppose we have a solution set Si =
{s1, s2, ..., st}. We denote the ranking based on the hypervolume contribution by
σH(s1), σH(s2), ..., σH(st), where σH(si) is the rank of the solution si among
the t solutions in Si. In the same manner, we denote the ranking based on the
RHV C

2 indicator by σR(s1), σR(s2), ..., σR(st). Spearman’s footrule is one of
the most well-known distances between rankings [19], which can be described as
follows:

D(Si, σH , σR) =

t∑
j=1

|σH(sj)− σR(sj)|. (4)

Small approximation error means that the distance between the two rankings
is small. Based on the distance in Eq. (4), we can measure the approximation
error. For a set of solution sets S = {S1, S2, ...ST }, the approximation error is
defined as follows:

AE(S, V, r) =
1

T

T∑
i=1

D(Si, σH , σR), (5)

where r is the reference point, σH is the ranking of the solutions in Si based on
the hypervolume contribution, and σR is the ranking of these solutions based on
the RHV C

2 indicator with the direction vector set V .

3.2 Problem Formulation

Now we can formulate the problem of generating a good direction vector set
for the RHV C

2 indicator as a subset selection problem. Given a large candidate
direction vector set U = {λ1,λ2, ...,λN}, a set of training solution sets S, and
a reference point r, the problem is to find a direction vector subset V ⊂ U with
|V | = n (n < N) to minimize the approximation error AE(S, V, r) in Eq. (5).
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3.3 Greedy Inclusion Algorithm

To solve the above problem, a simple greedy inclusion algorithm called the greedy
approximation error selection (GAES) is proposed (Algorithm 1). Firstly, a set of
training solution sets S should be prepared in advance. Then, a large candidate
direction vector set U is generated by some methods. The direction vector set
V is empty initially. Iteratively, the direction vector λ∗ ∈ U which minimizes
AE(S, V ∪ {λ}, r) is selected (i.e., moved from U to V ) until V reaches the
desired size.

We analyze the time complexity of Algorithm 1. The most time-consuming
step is to calculate the approximation error AE. Let us consider a single training
solution set Si with size t. In Eq. (4) and (5), we have to obtain two rankings of
the solutions in Si: One is based on the hypervolume contribution and the other
is based on the RHV C

2 indicator. The hypervolume contribution can be calculated
in advance. Therefore, we only need to calculate the RHV C

2 indicator with the
direction vector set V ∪ {λ} for every λ ∈ U . It is worth noting in Eq. (3) that
the RHV C

2 indicator with a direction vector set V is basically the average length
of the line segment determined by the direction vector λ for every λ ∈ V . Thus,
we can calculate the length L for each solution in Si with each direction vector in
U in advance, which requires O(Nt2m) time. With these lengths, we can update
the RHV C

2 indicator for each solution in Si in O(t) time. Sorting these solutions
requires O(t log t) time, which is performed for each λ in U in each iteration in
Algorithm 1. The total time complexity is O(T (nNt log t+Nt2m)).

Algorithm 1 Greedy Approximation Error Selection

Input: S (a set of training solution sets), N (size of a candidate direction vector set),
n (size of a desired direction vector set), r (reference point)
Output: V (desired direction vector set)
Generate a candidate direction vector set U of size N by some methods.
V ← ∅
while |V | < n

λ∗ = argmin
λ∈U

AE(S, V ∪ {λ}, r)

Move λ∗ from U to V
end while

4 Experiments and Discussions

4.1 Direction Vector Selection

Experimental Settings. The first experiment is to illustrate the direction
vector selection process of the GAES algorithm (Algorithm 1). We generate
100 training solution sets of size 100, and the hypervolume contribution of each
solution in each training solution set is calculated in advance. More specifically, to
generate each training solution set Si with size 100, we first determine the shape
(triangular or inverted triangular) and the curvature (linear, convex or concave)
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of the Pareto front. Then, 100 solutions in Si are randomly sampled from this
Pareto front. The triangular Pareto front

∑m
i=1 f

p
i = 1, fi ≥ 0 for i = 1, 2, ...,m

is used in the first 50 training solution sets. The remaining 50 training solution
sets use the inverted triangular Pareto front

∑m
i=1(1 − fi)

p = 1, 0 ≤ fi ≤ 1
for i = 1, 2, ...,m. The p value in the two formulas controls the curvature. To
make the curvature more diverse, the p value is determined by p = 2x where
x is uniformly sampled from [−1, 1] (i.e., the range of p value is [0.5, 2]). The
candidate direction vector set of size 10,000 is generated by the UNV method
in Section 2.3. The size of the desired direction vector set is set as 91, 105 and
120 for 3, 5 and 8-objective cases, respectively. The reference point r is set as
(1.2, 1.2, ..., 1.2). The proposed method with UNV is denoted as GAES-U in
our experiments.

The six direction vector set generation methods in Section 2.3 are used
as the baselines. For the MSS-U, MSS-D, and Kmeans-U methods, the size
of the candidate direction vector set is set as 49,770, 46,376 and 31,824 for
3, 5 and 8-objective cases, respectively. For each of the six methods and the
GAES-U method, 21 direction vector sets are generated from 21 independent
runs. We conduct the experiments on a virtual machine equipped with two
ADM EPYC 7702 64-Core CUP@2.4GHz, 256GB RAM and Ubuntu Operat-
ing System. All codes are implemented in MATLAB R2021b and available from
https://github.com/HisaoLabSUSTC/GAES.

Results and Discussions. The performance of the selected direction vectors by
GEAS-U is shown in Fig. 3 at each iteration (i.e., after selecting a single direction
vector, two direction vectors, ..., n direction vectors). The blue curve shows that
the approximation error of the RHV C

2 indicator on the training solution sets
decreases monotonically as more direction vectors are selected by the GAES-
U method. The GAES-U method (i.e., the rightmost point of the blue curve)
has a better approximation error than the other six methods. With the same
number of direction vectors, the approximation error by each method increases
as the number of objectives increases. This is because more direction vectors are
needed for the RHV C

2 indicator to approximate the hypervolume contribution
precisely in a higher-dimensional space. The advantage of the GAES-U method
is clear in the 8-objective case. Only one direction vector selected by the GAES-
U method (i.e., the leftmost point of the blue curve) has a similar approximation
error as 120 direction vectors generated by the DAS method (i.e., the top dash
line). The 40 direction vectors selected by the GAES-U method have a better
approximation error than 120 direction vectors generated by the other methods.

The direction vector sets generated by the GAES-U method are shown in
Fig. 4. In the 3-objective case, the direction vector set generated by the GAES-
U method in Fig. 4 (a) is less uniform than those generated by the DAS, MSS-D,
MSS-U and Kmean-U methods in Fig. 2 (a), (d), (e) and (f), and is more uniform
than those generated by the UNV and JAS methods in Fig. 2 (b) and (c).

Fig. 5 (a) shows the computational time for the training solution sets genera-
tion including the hypervolume contribution calculation, which increases severely
as the number of the objectives increases. However, this part only needs to be

https://github.com/HisaoLabSUSTC/GAES
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performed once, and the generated training solution sets and the calculated hy-
pervolume contribution can be used for multiple runs of the GAES-U method.
The runtime of the GAES-U method increases slightly as the number of the
objectives increases as shown in Fig. 5 (b).

(a) 3-objective (b) 5-objective (c) 8-objective

Fig. 3. Approximation errors of the RHV C
2 indicator with different direction vector set

generation methods on the training solution sets (average results over 21 runs).

𝑥𝑦

𝑧

(a) 3-objective (b) 5-objective (c) 8-objective

Fig. 4. The direction vector sets generated by the GAES-U method.

(a) (b)

Fig. 5. Runtime (a) for generating the training solution sets and pre-calculating the
hypervolume contribution of each solution in each training solution set. Runtime (b)
for selecting direction vectors by the GAES-U method averaged over 21 runs.
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4.2 Test on Six Regular Pareto Fronts

Experimental Settings. In the previous experiment, we have obtained differ-
ent direction vector sets. Then, in this experiment, we compare the performance
of the RHV C

2 indicator with these direction vector sets on testing solution sets.
To generate testing solution sets, six regular Pareto fronts are considered, which
are linear triangular, concave triangular and convex triangular Pareto fronts and
their corresponding inverted Pareto fronts. For each type of the front, 100 test-
ing solution sets of size 100 are randomly sampled from the front. Firstly, we
calculate the approximation error defined in Eq. (4) on the testing solution sets
using different direction vector sets. Then, the correct identification rate (CIR)
of the RHV C

2 indicator with different direction vector set generation methods
is calculated. For a testing solution set, the correct identification means that
the solution with the least hypervolume contribution is correctly identified by
the RHV C

2 indicator, and the CIR implies how many testing solution sets are
correctly handled.

Results and Discussions. Fig. 6 shows the approximation error of the RHV C
2

indicator with different direction vector set generation methods on the testing
solution sets. The GAES-U method (i.e., the rightmost point of the blue curve in
each figure in Fig. 6) has the smallest approximation error on the testing solution
sets. This observation shows the good generalization ability of the GAES-U
method. The CIR of the RHV C

2 indicator is shown in Table 1. The best CIR
(i.e., 58.5%) is obtained by the GAES-U method in Table 1. The UNV and
JAS method obtain 51.1% and 50.4% CIR, respectively. The worst one is the
Kmeans-U method with the CIR of 33.7%. From these CIR results of the RHV C

2

indicator, we can see that the proposed GAES-U method is clearly better than
the other six methods.

(a) 3-objective (b) 5-objective (c) 8-objective

Fig. 6. Approximation errors of the RHV C
2 indicator with different direction vector set

generation methods on the testing solution sets (average results over 21 runs).

4.3 Application: GAHSS

Experimental Settings. The direction vector sets generated by the GAES-
U method are tested by the greedy approximate hypervolume subset selection
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Table 1. Correct identification rate (CIR) of the RHV C
2 indicator with different direc-

tion vector set generation methods on different solution sets. The rank of each method
is in the parenthesis, and a small value means a better rank.

Solution Set GAES-U DAS UNV JAS MSS-D MSS-U Kmeans-U

Linear
Triangular

3 76.4%(1) 59.0%(7) 66.8%(4) 67.0%(3) 68.0%(2) 66.2%(5) 63.4%(6)

5 55.4%(1) 15.0%(7) 46.5%(2) 46.0%(3) 17.0%(6) 18.7%(5) 27.6%(4)

8 29.6%(5) 23.0%(6) 36.4%(2) 34.9%(3) 42.0%(1) 30.0%(4) 14.3%(7)

Linear
Inverted

Triangular

3 73.4%(1) 53.0%(6) 64.0%(3) 63.2%(5) 67.0%(2) 63.5%(4) 50.0%(7)

5 62.1%(1) 14.0%(7) 51.8%(2) 49.2%(3) 27.0%(6) 30.9%(4) 28.6%(5)

8 51.0%(1) 0.0%(6.5) 37.0%(2) 24.4%(4) 0.0%(6.5) 6.9%(5) 28.1%(3)

Concave
Triangular

3 67.4%(1) 32.0%(7) 57.0%(3) 58.8%(2) 38.0%(5) 36.8%(6) 49.4%(4)

5 61.4%(1) 16.0%(6) 50.7%(2) 49.8%(3) 21.0%(5) 26.7%(4) 13.3%(7)

8 65.9%(1) 53.0%(6) 64.8%(3) 61.7%(4) 56.0%(5) 65.3%(2) 42.3%(7)

Concave
Inverted

Triangular

3 73.8%(1) 41.0%(7) 59.6%(3) 60.7%(2) 50.0%(5) 50.7%(4) 46.9%(6)

5 40.1%(3) 26.0%(4) 42.7%(1) 42.1%(2) 23.0%(5) 15.9%(6) 12.1%(7)

8 55.5%(1) 0.0%(7) 38.6%(3) 36.4%(4) 10.0%(6) 43.9%(2) 33.0%(5)

Convex
Triangular

3 66.5%(1) 55.0%(6) 55.1%(5) 57.2%(4) 60.0%(3) 60.3%(2) 36.0%(7)

5 26.2%(2) 17.0%(6) 25.0%(3) 30.4%(1) 19.0%(4) 18.8%(5) 4.5%(7)

8 7.0%(5) 33.0%(1) 14.2%(4) 18.8%(3) 30.0%(2) 4.0%(6) 1.3%(7)

Convex
Inverted

Triangular

3 65.5%(1) 32.0%(6) 50.0%(2) 49.5%(3) 38.0%(4) 35.1%(5) 27.9%(7)

5 88.5%(2) 90.0%(1) 76.6%(5) 79.3%(4) 66.0%(6) 80.8%(3) 42.6%(7)

8 87.7%(2) 100.0%(1) 83.1%(4) 77.6%(6) 61.0%(7) 81.7%(5) 84.8%(3)

Avg. Rank 1.72 5.42 2.94 3.28 4.47 4.28 5.89

Avg. CIR 58.5% 36.6% 51.1% 50.4% 38.5% 40.9% 33.7%

(GAHSS) algorithm [24]. The difference between the GAHSS algorithm and the
greedy HSS algorithm mentioned in Section 2.4 is that the RHV C

2 indicator is
used to approximate the hypervolume contribution in GAHSS. A part of the
subset selection benchmark test suite proposed in [27] is used to test the perfor-
mance of the GAHSS algorithm equipped with the direction vector sets generated
by the GAES-U method and the other six methods. Specifically, the candidate
solution sets consist of the nondominated solutions after 100,000 function evalu-
ations when NSGA-III [8] is run on DTLZ1 [9], DTLZ2 [9], Minus-DTLZ1 [16],
Minus-DTLZ2 [16], DTLZ7 [9] and WFG3 [14] problems for 3, 5 and 8-objective
cases. Thus, 18 candidate solution sets are used. We select 91, 210 and 156 solu-
tions from the candidate solution sets for 3, 5 and 8-objective cases, respectively.
The hypervolume of the selected solution subset is used as the performance met-
ric. The reference point is set as 1.2 times the nadir point of the true Pareto
front for each candidate solution set. GAHSS is performed 21 runs with each
direction vector set generation method, and the Wilcoxon rank sum test is used
to compare the hypervolume performance.

Results and Discussions. Table 2 shows the hypervolume of the solution
subset selected by the GAHSS algorithm with different direction vector set gen-
eration methods. The best result is obtained by the proposed GAES-U method.
One interesting observation is that the Kmeans-U method, which has poor per-
formance in the CIR experiment in Table 1, shows competitive performance
in the GAHSS experiment in Table 2. Future examinations on this interesting
observation is needed.
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Table 2. Hypervolume of the solution subset selected by GAHSS with different direc-
tion vector set generation methods on different candidate solution sets. The rank of
each method is in the parenthesis, and a small value means a better rank. The Wilcoxon
rank sum test is used to compare the performance. The symbols “+”, “-” and “≈” mean
the GAES-U method “is significantly better than”, “is significantly worse than” and
“has no significant difference with” the corresponding method, respectively.

Candidate
Solution Set

GAES-U DAS UNV JAS MSS-D MSS-U Kmeans-U

DTLZ1
3 1.90E-1(1) 1.89E-1(7,+) 1.90E-1(4,+) 1.89E-1(6,+) 1.90E-1(3,+) 1.90E-1(5,+) 1.90E-1(2,≈)

5 7.68E-2(1) 7.56E-2(5,+) 7.67E-2(3,+) 7.67E-2(4,+) 7.54E-2(6,+) 7.53E-2(7,+) 7.67E-2(2,+)

8 1.67E-2(1) 1.20E-2(7,+) 1.67E-2(2,+) 1.67E-2(4,+) 1.46E-2(6,+) 1.67E-2(5,+) 1.67E-2(3,+)

DTLZ2
3 1.15E+0(1) 9.30E-1(7,+) 1.15E+0(3,+) 1.15E+0(4,+) 1.01E+0(6,+) 1.05E+0(5,+) 1.15E+0(2,≈)

5 2.21E+0(1) 1.59E+0(7,+) 2.20E+0(3,+) 2.20E+0(4,+) 1.62E+0(6,+) 2.09E+0(5,+) 2.21E+0(2,≈)

8 4.16E+0(2) 2.21E+0(6,+) 4.15E+0(3,+) 4.14E+0(4,+) 2.08E+0(7,+) 4.12E+0(5,+) 4.16E+0(1,-)

Minus-
DTLZ1

3 8.87E+7(2) 8.74E+7(7,+) 8.85E+7(3,+) 8.84E+7(5,+) 8.81E+7(6,+) 8.84E+7(4,+) 8.88E+7(1,-)

5 4.48E+12(2) 4.07E+12(7,+) 4.46E+12(3,+) 4.40E+12(4,+) 4.11E+12(6,+) 4.23E+12(5,+) 4.48E+12(1,≈)

8 1.36E+19(1) 8.23E+18(7,+) 1.27E+19(3,+) 1.11E+19(4,+) 8.41E+18(6,+) 9.05E+18(5,+) 1.35E+19(2,+)

Minus-
DTLZ2

3 4.47E+1(2) 4.00E+1(7,+) 4.45E+1(3,+) 4.44E+1(4,+) 4.31E+1(5,+) 4.31E+1(6,+) 4.47E+1(1,≈)

5 2.51E+2(1) 2.31E+2(7,+) 2.47E+2(3,+) 2.45E+2(4,+) 2.31E+2(6,+) 2.40E+2(5,+) 2.50E+2(2,+)

8 1.15E+3(1) 6.55E+2(7,+) 1.10E+3(3,+) 1.08E+3(4,+) 8.17E+2(6,+) 1.04E+3(5,+) 1.14E+3(2,+)

DTLZ7
3 2.81E+0(2) 2.54E+0(7,+) 2.80E+0(3,+) 2.79E+0(4,+) 2.72E+0(6,+) 2.73E+0(5,+) 2.81E+0(1,≈)

5 5.08E+0(1) 4.56E+0(7,+) 5.04E+0(3,+) 5.03E+0(4,+) 4.79E+0(6,+) 4.87E+0(5,+) 5.07E+0(2,+)

8 7.56E+0(1) 6.05E+0(6,+) 7.40E+0(5,+) 7.41E+0(3,+) 5.50E+0(7,+) 7.40E+0(4,+) 7.55E+0(2,≈)

WFG3
3 3.85E+1(2) 3.55E+1(5,+) 3.84E+1(3,≈) 3.83E+1(4,≈) 3.55E+1(6,+) 3.54E+1(7,+) 3.85E+1(1,-)

5 1.47E+4(1) 1.37E+4(7,+) 1.46E+4(3,+) 1.47E+4(2,+) 1.37E+4(6,+) 1.46E+4(4,+) 1.46E+4(5,+)

8 1.01E+8(3) 6.42E+7(7,+) 1.01E+8(4,≈) 1.01E+8(1,-) 9.09E+7(6,+) 1.01E+8(2,-) 9.90E+7(5,+)

Avg. Rank 1.44 6.67 3.17 3.83 5.89 4.94 2.06

+/-/≈ 18/0/0 16/0/2 16/1/1 18/0/0 17/1/0 8/3/7

5 Conclusion

In this paper, we formulated the problem of generating a good direction vec-
tor set for the RHV C

2 indicator as a subset selection problem to minimize the
approximation error. A greedy inclusion method called the greedy approxima-
tion error selection (GAES) was proposed to solve this problem. Experimental
results showed that the GAES method outperforms other available methods for
direction vector set generation for the RHV C

2 indicator. The direction vector set
generated by the GAES method was applied to the greedy approximate hyper-
volume subset selection, and good performance was demonstrated in comparison
with the other direction vector set generation methods. One future research topic
is to examine the performance of the GAES method in hypervolme-based evo-
lutionary multi-objective algorithms.
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