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Abstract—The performance of a newly designed evolutionary 

algorithm is usually evaluated by computational experiments in 

comparison with existing algorithms. However, comparison 

results depend on experimental setting; thus, fair comparison is 

difficult. Fair comparison of multi-objective evolutionary 

algorithms is even more difficult since solution sets instead of 

solutions are evaluated. In this paper, the following four issues 

are discussed for fair comparison of multi-objective evolutionary 

algorithms: (i) termination condition, (ii) population size, (iii) 

performance indicators, and (iv) test problems. Whereas many 

other issues related to computational experiments such as the 

choice of a crossover operator and the specification of its 

probability can be discussed for each algorithm separately, all 

the above four issues should be addressed for all algorithms 

simultaneously. For each issue, its strong effects on comparison 

results are first clearly demonstrated. Then, the handling of each 

issue for fair comparison is discussed. Finally, future research 

topics related to each issue are suggested. 

Keywords—Performance comparison, performance indicators, 

test problems, termination condition, evolutionary multi-objective 

optimization.  

I. INTRODUCTION 

Evolutionary multi-objective optimization (EMO) is an 
active research topic. Various EMO algorithms are proposed 
every year. A newly proposed algorithm is evaluated through 
computational experiments by comparing it with existing ones 
using performance indicators. Experimental results are reported 
as a number of tables together with statistical significance test 
results. Those results usually show high performance of the 
new algorithm. In this manner, a number of EMO algorithms 
were proposed including well-known classic algorithms (e.g., 
SPEA [1], NSGA-II [2], MOEA/D [3], SMS-EMOA [4]) as 
well as recently-proposed algorithms for many-objective 
optimization (HypE [5], PICEA-g [6], GrEA [7], NSGA-III [8], 

Two_Arch2 [10], MOEA/DD [9], -DEA [11], RVEA [12], 
SPEA/R [13], LMEA [14], AR-MOEA [15]). 

In each of these studies, it was shown by computational 
experiments that a newly proposed algorithm outperformed 
existing algorithms. However, fair comparison of different 
EMO algorithms is not easy since the evaluated performance of 
each algorithm usually depends on experimental setting. In 
general, each algorithm can be evaluated under its best setting. 
For example, each algorithm can use an appropriate mutation 
operator and an appropriate mutation probability. This paper 
does not discuss the specifications of those parameters which 
can be specified separately from the other algorithms. However, 
some items in the setting of the computational experiments 

should be commonly specified over all algorithms.  
This paper discusses how to specify the common setting of 

computational experiments, which is used by all the compared 
EMO algorithms. More specifically, the focus of this paper is 
the setting of the following four issues: (i) the termination 
condition of each algorithm, (ii) the population size of each 
algorithm, (iii) performance indicators, and (iv) test problems. 
Except for the population size, it is clear that the same setting 
should be used in all the compared EMO algorithms in 
computational experiments. In single-objective optimization, 
each algorithm can use a different population size specification. 
This is because the performance is evaluated using the obtained 
best solution. However, a solution set (usually the final 
population) is used to evaluate each EMO algorithm. In many 
cases, larger solution sets tend to have better indicator values. 
Thus, the same population size has been used whereas each 
EMO algorithm has its own appropriate specification. 

Our intention is to clearly illustrate various difficulties in 
fair comparison of EMO algorithms, which are related to the 
above-mentioned four issues. Our discussions on those 
difficulties are to encourage the future development of the 
EMO research field without excessively focusing on the 
proposal of overly-specialized new algorithms in a specific 
setting. This is because those algorithms are not likely to work 
well on various real-world tasks.  

In this paper, the dependency of performance comparison 
results on the termination condition is examined in Section II. 
Such dependency indicates the importance of performance 
comparison under the anytime algorithm framework. Next, the 
effect of the population size is examined in Section III. It is 
shown that different comparison results are obtained depending 
on population size specifications. For handling this issue, the 
use of the solution subset selection framework is suggested. 
From the final population or from all the evaluated solutions, a 
solution subset of a pre-specified size is selected for fair 
comparison. Then, in Section IV, difficulties related to 
performance indicators [16] are discussed. It is shown that the 
choice of a performance indicator has large effects on 
comparison results. It is also shown that comparison results 
depend on the setting in each indicator. For example, different 
reference points for hypervolume calculation generate different 
comparison results. Our experimental results show the 
necessity of using multiple indicators. In Section V, the choice 
of test problems is discussed. Comparison results based on 
newly proposed test problems are totally different from 
reported results for the DTLZ [17] and WFG [18] test suites. 
This indicates that the use of various test problems is needed in 
computational experiments for fair comparison. Finally, in 
Section VI, this paper is concluded with a list of suggestions. 
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II. SPECIFICATION OF TERMINATION CONDITION 

In computational experiments, a pre-specified number of 
solutions evaluated in each algorithm is used to terminate its 
execution. That is, all algorithms are compared under the same 
pre-specified computational effort. The specification of this 
termination condition is discussed in this section. 

In general, the point in EMO algorithm design is to 
implement a good balancing mechanism between diversity and 
convergence (exploration and exploitation, global search and 
local search). Some algorithms are developed to quickly find 
good non-dominated solutions. Others are designed to find 
well-distributed solutions after spending long computation time. 
If they are compared, convergence-oriented algorithms will 
show better performance in early generations. However, after a 
large number of generations, diversity-oriented algorithms can 
be better. It is likely that the specification of the termination 
condition has large effects on their comparison results. 

To demonstrate large effects of the termination condition, 
three implementations of MOEA/D [3] are compared: 
MOEA/D-WS with a weighted sum function, MOEA/D-PBI 
with a PBI function, and MOEA/D-Tch with a Tchebycheff 

function. As the penalty parameter value (i.e., ) in MOEA/D-

PBI,  = 5 is used as in many studies including the MOEA/D 
paper [3]. Contour lines are shown in Fig. 1 for the weighted 
sum and the PBI function for the weight vector w = (0.5, 0.5). 
It is assumed that both objectives f1(x) and f2(x) are to be 

minimized. The shaded area in each figure in Fig. 1 shows the 
better region than a current solution A with respect to the 
corresponding scalarizing function. If a new solution is 
generated in the shaded region, the current solution is replaced. 
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            (a) Weighted sum.                              (b) PBI function ( = 5). 

Fig. 1. Contour lines for w = (0.5, 0.5). The shaded area shows the 
better region than point A by each scalarizing function.  

 
In Fig. 1, if a new solution is generated from the current 

solution A randomly in its neighborhood in the objective space, 
the current solution A has a much higher probability to be 
replaced with the new solution in Fig. 1 (a) than Fig. 1 (b). As 
a result, the weighted sum in Fig. 1 (a) has stronger 
convergence ability than the PBI function in Fig. 1 (b). 
However, the final solution for the weighted sum is not always 
close to the weight vector. Thus, well-distributed solutions are 
not always obtained from the weighted sum [19]. In contrast, 
the final solution for the PBI function is usually close to the 
weight vector since the better region is narrow and close to the 
weight vector in Fig. 1 (b). After many generations, it is likely 
that well-distributed solutions are obtained by the PBI function. 
When the Tchebycheff function is used, the better region of the 

current solution A is the same as its dominating region, which 
is smaller than Fig. 1 (a) but larger than Fig. 1 (b). 

Each version of MOEA/D is applied to the 10-objective 
DTLZ2 [17] and WFG3 [18] test problems. For comparison, 
the 10-objective HTNY19 [20], [21] test problem is also used. 
DTLZ and WFG are well-known frequently-used test suites. 
The Pareto front of DTLZ2 is concave triangular [17]. WFG3 
was originally intended to be a degenerate test problem [18]. 
However, it actually has a partially degenerate Pareto front [22]. 
HTNY19 is a recently-proposed difficult scalable test problem, 
which has the following formulation [20], [21]: 
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The value of  is specified as  = 0.1 in our experiments. 
All objectives in each DTLZ (WFG) test problem share the 

same distance function. Thus, good convergence is easily 
realized by minimizing the distance function. If the value of the 
distance function is zero, the solution is on the Pareto front. 
The distance from the Pareto front is proportional to the 
distance function value. Thus, the convergence improvement of 
solutions is single-objective optimization. As a result, it is easy 
for many EMO algorithms to find good solutions close to the 
Pareto fronts of DTLZ, WFG and their minus versions [23]. In 
contrast, the objectives of HTNY19 have no shared distance 
function. Moreover, there is an interrelation among the 

objectives, which is specified by the parameter  in Eq. (1). 
These features make HTNY19 very difficult.  

The following setting is used in each algorithm:  

Number of decision variables (n):  
          n = 19 in DTLZ2 and WFG3, n = 10 in HTNY19. 
Population size: 275 for all 10-objective problems. 
Neighborhood size: 20.  
Polynomial mutation: Index 20, Probability 1/n. 
SBX crossover: Index 30, Probability 1.0.  
Termination condition: 1, 2, 5, 10, 20, 50, ...,10000 generations. 
Number of runs of each algorithm: 31 independent runs. 

The performance of each algorithm is evaluated for various 
specifications of the termination condition from 1 to 10000 
generations. Except for the termination condition, the above 
setting is the same as or similar to the setting in many other 
studies (e.g., in the NSGA-III paper [8]). The hypervolume 
indicator [24] is used to evaluate each algorithm. Hypervolume 
values are calculated for the reference point (1.2, ..., 1.2) using 
the normalized objective space with the nadir point (1, ..., 1) 
and the ideal point (0, ..., 0). The PlatEMO framework [25] is 
used in our computational experiments. 

In Figs. 2-4, average hypervolume values are summarized 
for each algorithm on each test problem. The vertical axis of 
each figure shows average hypervolume (HV) values. In Fig. 2 
on DTLZ2, average hypervolume values quickly increase in 
the first 100 generations. After that, their changes are small. 
These observations suggest that solutions in each algorithm are 
quickly converged to the Pareto front. Since DTLZ2 is not a 



difficult problem to achieve good convergence, solution 
distributions on the Pareto front have large effects on 
comparison results. The best and worst results are obtained by 
MOEA/D-PBI and MOEA/D-WS, respectively, independent of 
the termination condition. These observations are consistent 
with other studies (e.g., [23]) where the best and worst results 
on DTLZ1-4 were obtained by MOEA/D-PBI and MOEA/D-
WS, respectively, among the three MOEA/D implementations. 

 

Fig. 2. Average HV results for 10-objective DTLZ2. 

 
Fig. 3. Average HV results for 10-objective WFG3. 

 

Fig. 4. Average HV results for 10-objective HTNY19. 

 
Figure 3 shows the experimental results on WFG3. WFG3 

has a partially degenerate Pareto front [22]. Its shape is totally 
different from the weight vector distribution. As a result, 
MOEA/D-PBI shows a strange search behavior in Fig. 3. As in 
Fig. 2, the change of the average hypervolume values in Fig. 3 
is small after the 100th generation of each algorithm. In Fig. 3, 
MOEA/D-Tch shows the best performance independent of the 

termination condition. 
In Fig. 2 and Fig. 3, performance comparison results are 

independent of the termination condition (whereas they are 
strongly problem-dependent). This is because the frequently-
used DTLZ and WFG test problems are easy problems for 
MOEA/D with respect to the convergence of solutions since all 
objectives in each test problem share a common distance 
function. That is, it is easy for MOEA/D to find good solutions 
close to their Pareto fronts. As a result, comparison results do 
not depend on the convergence ability of each algorithm (they 
depend on the distribution of solutions in each algorithm). 

However, when the three MOEA/D implementations are 
applied to difficult problems in terms of convergence, their 
comparison results depend on the termination condition as 
demonstrated in Fig. 4 for 10-objective HTNY19. If the 
termination condition is less than or equal to 1000 generations, 
the average hypervolume values are zero by all the three 
implementations. However, if the termination condition is 5000 
or 10000 generations, MOEA/D-WS clearly shows much better 
results than the other two MOEA/D implementations.  

To clearly show the effect of the termination condition, the 
7-objective HTNY19 problem is used in the same manner as in 
Figs. 2-4. Figure 5 shows experimental results where only the 
population size is changed from 275 (in Figs. 2-4) to 294 (in 
Fig. 5). In Fig. 5, MOEA/D-WS with strong convergence 
ability shows the best performance before the 20th generation 
and the worst performance after the 50th generation. 

 
Fig. 5. Average HV results for 7-objective HTNY19. 

 
To further analyze the experimental results in Fig. 4 and 

Fig. 5, the convergence of each solution and the diversity of 
each population are examined during the execution of each 
algorithm. To evaluate the convergence, the sum of all 
objective values of each solution is used. When the sum is 1, 
the solution is on the Pareto front. The sum also shows the 
Manhattan distance of each solution from the ideal point (0, 
0, ..., 0). The average value of the sum of all objective values is 
calculated at each generation over all solutions in 31 runs of 
each algorithm. Whereas the generational distance (GD) 
indicator [26] has been often used as a convergence indicator, 
the sum of all objective values is used here for its simplicity. 
To evaluate the diversity of the population, the number of 
different solutions in the population is counted in each 
generation. In general, MOEA/D has a strong diversification 
ability due to the use of uniformly-distributed weight vectors. 
However, when multiple weight vectors share the same 
solution, the diversity of solutions in a population is not high 



since the population includes duplicated solutions. In this case, 
the number of different solutions is smaller than the number of 
weight vectors (i.e., the population size). The average value of 
the number of different solutions is calculated at each 
generation over 31 runs of each algorithm.  

Experimental results on the 7-objective HTNY19 problem 
are shown in Fig. 6 and Fig. 7, which correspond to Fig. 5. As 
shown in Fig. 6, the sum of all objective values quickly 
converges to 1 in each algorithm. This means that all solutions 
converge to the Pareto front. Among the three algorithms, 
MOEA/D-WS shows the fastest convergence ability, which 
explains the quickest increase of the HV value by MOEA/D-
WS in Fig. 5. However, in Fig. 7, the number of different 
solutions decreases throughout the execution of MOEA/D-WS. 
As a result, the average HV values by MOEA/D-WS in Fig. 5 
are smaller than those by the other algorithms except for very 
early generations. 

 
Fig. 6. Average sum of all objectives for 7-objective HTNY19. 

 
Fig. 7. Number of different solutions for 7-objective HTNY19. 

 
Experimental results on the 10-objective HTNY19 problem 

are shown in Fig. 8 and Fig. 9, which correspond to Fig. 4. 
Figure 8 suggests that MOEA/D-Tch and MOEA/D-PBI have 
some difficulty in pushing the population towards the Pareto 
front. This observation is consistent with Fig. 4 where these 
two algorithms always have zero average HV values. In Fig. 8, 
only MOEA/D-WS can converge the population to the Pareto 
front. After converging to the Pareto front, the number of 
different solutions is severely decreased by MOEA/D-WS in 
Fig. 9. A similar behavior of MOEA/D-WS is also observed in 
Fig. 7. 

 

Fig. 8. Average sum of all objectives for 10-objective HTNY19. 

 
Fig. 9. Number of different solutions for 10-objective HTNY19. 
 
The severe decrease in the number of different solutions at 

the second generation in Fig. 7 and Fig. 9 (i.e., from the left-
most circles to the second left-most circles in these figures) is 
due to the random solution assignment in the first generation in 
all the three versions of MOEA/D. In MOEA/D, each weight 
vector has a randomly generated initial solution. Thus the total 
number of different solutions at the first generation is exactly 
the same as the population size. Since a solution is randomly 
generated and randomly assigned to each weight vector, the 
assigned solutions are not suitable for many weight vectors. As 
a result, many solutions are replaced with new good solutions 
in the second generation. Since multiple solutions are replaced 
with a single good solution, the number of different solutions is 
severely decreased in the second generation. 

The dependency of performance comparison results on the 
termination condition is clearly shown in Fig. 4 and Fig. 5. If 
each algorithm is terminated at the 100th generation in Fig. 4, 
all algorithms are evaluated as having the same performance 
(whereas they show different performance after the 5000th 
generation). In Fig. 5, MOEA/D-WS can be evaluated as being 
the best and the worst depending on the termination condition. 
Since any specification is not fair, it is needed to use various 
termination conditions (at least two or three specifications). In 
this case, EMO algorithms are compared as anytime algorithms 
[27]. In some studies (e.g., Tanabe et al. [28]), EMO 
algorithms are compared as anytime algorithms under various 
termination conditions. Since it is not likely that a single 
algorithm is always the best over a wide range of generations, 
the choice of an appropriate algorithm from a large algorithm 



pool depending on the termination condition seems to be a 
promising research direction. Of course, it is an interesting 
challenge to try to develop an EMO algorithm with robust 
performance over a wide range of termination conditions. In 
real-world applications, it is also important to develop a 
specialized EMO algorithm which works well under a specific 
termination condition (e.g., under a limited number of solution 
evaluations such as 500 solution evaluations). 

When an anytime EMO algorithm is designed, an important 
issue is the performance oscillation of the current population 
through generation update. Some EMO algorithms with a 

steady state ( +1) generation update mechanism such as SMS-
EMOA [4] carefully improve the current population by 
creating only a single new solution at each generation. Thus, 
usually they do not show any severe performance oscillation of 
the current population through generation update. However, 

some other EMO algorithms with a ( +) generation update 
mechanism such as NSGA-II [2] replace many solutions with 
new solutions. As a result, they often show performance 
oscillation through generation update. That is, the performance 
of the current population can be worse than that of the previous 
population. Moreover, the final populations of those algorithms 
often include solutions that are dominated by old solutions 
(which were generated and deleted in previous generations) as 
shown in [29]. For designing a good anytime EMO algorithm 
with stable performance, it is important to carefully store good 
solutions in the current or archive population to achieve a 
stable performance with no severe performance oscillation.  

III. SPECIFICATION OF POPULATION SIZE 

In general, performance indicator values are influenced by 
the solution set size. The hypervolume value is improved by 
adding any non-dominated solution to a solution set. Thus, 
larger solution sets are likely to have larger hypervolume 
values than smaller ones. For example, in NSGA-II, the final 
population is constructed by removing half solutions from a 
merged population of parents and offspring. It is likely that a 
larger (i.e., better) hypervolume value can be obtained by using 
the merged population instead of the final population. These 
discussions explain why the size of the final population should 
be the same for fair comparison (i.e., why the population size 
should be the same in all the compared EMO algorithms). 

However, it is likely that an appropriate population size is 
different in each EMO algorithm. Some algorithms work well 
with a large population while others are efficient with a small 
population. Thus, any specification is not fair. This is because 
different performance comparison results will be obtained from 
different specifications. Depending on the population size, 
different algorithms will be evaluated as good algorithms.  

For demonstrating large effects of the population size on 
performance comparison results, MOEA/D-Tch [3], NSGA-III 

[8], MOEA/DD [9] and  -DEA [11] are applied to the five-
objective WFG3 problem in a similar manner to [30] under the 
following setting: 

Population size:  210, 1001, 5985. 
Neighborhood size: 20. 
Polynomial mutation: Index 20, Probability 1/n. 
SBX crossover: Index 30, Probability 1.0. 
Termination condition: 210,000 solution evaluations.  

Each algorithm is evaluated under three population size 
specifications: standard (210), large (1001), and very large 
(5985). The termination condition corresponds to 1000 
generations with the standard population size 210. Average 
hypervolume values are calculated using the final population in 
the normalized objective space over 31 runs.  

Figure 10 summarizes experimental results for the three 
population size specifications in each EMO algorithm. The 
population size has large effects on comparison results in Fig. 
10. While MOEA/D-Tch with the very large population works 
very well, its performance is not good under the standard 
setting. The largest average hypervolume value is obtained in 
Fig. 10 by MOEA/D-Tch with the very large population. 
However, it cannot be concluded that MOEA/D-Tch is the best 
algorithm in Fig. 10. This is because the calculated average 
hypervolume value of 5985 solutions cannot be compared in a 
fair manner with that of much fewer solutions obtained by the 
other algorithms (e.g., 210 solutions by NSGA-III). 

 
Fig. 10. Average HV results of the final population for five-objective 
WFG3. 

 
One idea to compare all results in Fig. 10 in a fair manner 

is to select a solution subset of the same size (e.g., 210 
solutions) from the final population. Here, a hypervolume-
based greedy forward selection method [31], [32] is used. 
Solutions are selected one by one in a greedy manner for 
hypervolume maximization of the selected solution subset. 
That is, each solution is evaluated in the greedy algorithm by 
its contribution to the hypervolume of the selected solution 
subset. From the final population, 210 solutions are selected 
using the greedy algorithm. After that, their hypervolume is 
calculated. Then, the average result is calculated over 31 runs. 
Figure 11 shows experimental results where the largest average 
hypervolume value is obtained by MOEA/D-Tch when the 
population size is very large. Note that all solution subsets are 
compared under the condition of selecting 210 solutions in Fig. 
11 whereas the final populations of different size (i.e., from 
210 to 5985 solutions) are compared in Fig. 10. Thus, it can be 
concluded from Fig. 11 that the best solution sets are obtained 
by MOEA/D-Tch with the very large population. 

The comparison between Fig. 10 and Fig. 11 shows that 
they are almost the same. The right-most four circles in Fig. 10 
(and Fig. 11) are the average HV values of the final 
populations with 5985 solutions (and their subsets with 210 
solutions). However, there are no large differences between Fig. 
10 and Fig. 11. That is, the average HV values are not severely 
decreased by selecting 210 solutions from the final populations 



with 5985 solutions.  

 
Fig. 11. Average HV results of selected 210 solutions from the final 
population in each run in Fig. 10. 

In order to examine this observation, the number of non-
dominated solutions is counted in each final population. The 
average number of non-dominated solution in each final 
population of size 5985 is as follows: 2964.33 (49.53%) in 
MOEA/D-Tch, 5984.50 (99.99%) in NSGA-III, 5710.89 

(95.42%) in MOEA/DD, and 5983.33 (99.97%) in  -DEA. 
The number of non-dominated solutions is much larger than 
210. Next, the average HV values of selected solution subsets 
with different size are calculated. The following different 
specifications of the solution subset size are examined: 1, 2, 3, 
4, 5, 10, 20, 30, 40, 50, 100, 210, 5985. Experimental results 
are summarized in Fig. 12. In this figure, NSGA-III results (red 
circles) are almost the same as MOEA/DD results (yellow 
circles). This figure shows that the selected solution subsets 
with 100 and 210 solutions have almost the same HV values as 
all the 5985 solutions in the final populations. 

 
Fig. 12. Average HV results of selected solution subsets of different 
size (i.e., with 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100, 210, 5985 
solutions) from the final populations. 

 
Another idea for fair performance comparison is to select a 

same size solution subset from all the evaluated solutions in 
each run (instead of the selection from the final population). 
Using the hypervolume-based greedy method, 210 solutions 
are selected from the evaluated 210,000 solutions in each run 
in Fig. 10. Then, their hypervolume value is calculated. 
Experimental results are summarized in Fig. 13, which are 
average results over 31 runs. Independent of the population 
size, MOEA/D-Tch shows high performance in Fig. 13. Note 

that better results are obtained in Fig. 13 than Fig. 10 and Fig. 
11 (e.g., average hypervolume values are larger than 1.8 in 
many cases in Fig. 13). That is, better solution subsets can be 
selected by using not only solutions in the final population but 
also all the other evaluated solutions as candidate solutions. 

 
Fig. 13. Average HV results of selected 210 solutions from all the 
evaluated solutions in each run in Fig. 10. 

It is shown in Fig. 13 that MOEA/D-Tch has high search 
ability to find good solutions during its execution independent 
of the population size. However, it needs a very large 
population to keep good solutions in the current population. 
This is the reason why the performance of the final population 
of MOEA/D is severely deteriorated by using a regular 
population size in Fig. 10 (i.e., the left-most blue circle in Fig. 
10). It is also shown in Fig. 13 that the search ability of the 
other three algorithms is deteriorated by increasing the 
population size. This is explained as follows. Since our 
computational experiments are performed under the same 
number of solution evaluations, a larger population size means 
a smaller number of generations. The decrease in the number 
of generations degrades the convergence ability of those 
algorithms. 

The use of the final population under the condition of the 
same population size for fair comparison is the frequently-used 
standard practice in the EMO community. However, different 
comparison results are obtained depending on the population 
size specification. To compare experimental results under 
different population size specifications, the idea of solution 
subset selection can be used as shown in Fig. 11 and Fig. 13. 
Better results than the final population in Fig. 10 are obtained 
by selecting solutions from all the evaluated solutions in Fig. 
13. This means that a good subset of all the evaluated solutions 
is not always stored as the final population in each EMO 
algorithm. It has been clearly demonstrated in [29] that the 
final population often includes dominated solutions by other 
solutions which are generated and deleted in previous 
generations (i.e., which are not in the final population).  

Figure 10 shows that the population size specification has 
large effects on final population-based comparison results. 
Whereas the appropriate specification of the population size for 
each algorithm is different, it is not fair to compare different 
algorithms using their final populations of different size (e.g., it 
is not fair to compare 210 solutions with 5985 solutions). In 
this situation, each algorithm can be evaluated in a fair manner 
after selecting a solution subset of the same size from the final 
population or from all the evaluated solutions.  



Performance comparison results based on selected subsets 
from all the evaluated solutions have been reported in some 
studies [28], [30], [33]-[35]. By selecting solution subsets of 
the same size, each EMO algorithm can be evaluated under its 
best population size specification. However, at least the 
following two issues need to be further addressed: 
(i) How to specify the size of solution subsets for performance 
comparison (i.e., how to specify the number of solutions to be 
selected for performance comparison). 
(ii) How to select solution subsets efficiently in a realistic 
computation time, especially for many-objective problems. 

For the first issue, it was reported in [36] that the size of 
solution subsets has only minor effects on comparison results 
(whereas the population size has large effects as shown in Figs. 
10, 11, 13). That is, similar comparison results were obtained 
from computational experiments with various specifications of 
the solution subset size from 15 solutions to more than 5000 
solutions in [36]. This is also consistent with Fig. 12. 

With respect to the second issue, the main difficulty is that 
the number of evaluated solutions is very large, which can be 
hundreds of thousands of solutions. From those solutions, first, 
non-dominated solutions are selected. One research topic is the 
design of an efficient pre-screening method of non-dominated 
solutions [37]. The challenge is the handling of such a huge 
number of solutions. Next, a solution subset of a pre-specified 
size is selected from the obtained non-dominated solutions. 
This step includes a number of interesting and important 
research topics, which will be explained later.  

Figure 14 shows the percentage of non-dominated solutions 
among evaluated solutions until the corresponding generation 
for the 10-objective DTLZ2, WFG3 and HTNY19 problems 
during the execution of MOEA/D-Tch with the same setting as 
in Section II (e.g., the population size is 275). In Fig. 14, the 
percentage of non-dominated solutions is high in all the three 
test problems. After 10,000 generations (i.e., among the 
evaluated 2,750,000 solutions), it is 84.6% (DTLZ2), 41.9% 
(WFG3), and 64.9% (HTNY19). That is, more than one 
million non-dominated solutions are obtained by each run on 
each test problem on average. The percentage is lower for 
WFG3 than that for the other test problems. This is because 
WFG3 has a partially degenerate Pareto front [22]. However, 
even for WFG3, more than 40% of the evaluated solutions (i.e., 
more than 1,100,000 solutions) are non-dominated. 

 
Fig. 14. Percentage of non-dominated solutions in evaluated solutions 
until the corresponding generation of MOEA/D-Tch (average results 
over 31 runs). For example, the percentage at the 1000th generation is 
calculated using the evaluated solutions in the first 1000 generations. 

Solution subset selection using the hypervolume indicator 
has been actively studied. This research topic is often called 
hypervolume subset selection. Exact optimization methods 
have been proposed for maximizing the hypervolume of the 
selected subset [38]-[42]. The focus of those studies is mainly 
on environmental selection where the next population is 
selected from current and offspring solutions. It is difficult to 
apply those exact methods to solution subset selection from a 
large number of candidate (i.e., non-dominated) solutions for 
performance comparison due to their high computation 
complexity. This is the reason why the hypervolume-based 
greedy method is used in this paper.  

Since hypervolume calculation is time-consuming, efficient 
methods which are not based on hypervolume calculation are 
often used for subset selection when a large number of 
candidate solutions are given. For example, in distance-based 
greedy methods [28], [43], the distance from each remaining 
solution to the selected solution subset (i.e., to the nearest 
selected solution) is calculated, and the most distant remaining 
solution is selected one by one. As initial solutions, the 
distance-based greedy method in [28] selects m extreme 
solutions of an m-objective problem. In [43], a randomly 
selected single extreme solution is used as an initial solution. 
Those distance-based greedy methods try to maximize the 
diversity and uniformity of solutions by maximizing the 
minimum distance between the selected solutions.  

In Fig. 15 (a), the distance-based greedy method [43] is 
illustrated. First, a large number of candidate solutions are 
generated on the linear Pareto front defined by f1 + f2 + f3 = 1 
and 0   fi   1 for i = 1, 2, 3 in Fig. 15. More specifically, 
5050 solutions are generated in the same manner as Das & 
Dennis method [44] (i.e., the generation method of weight 
vectors in MOEA/D). Next, its subset S is selected by the 
distance-based greedy method [43] in Fig. 15 (a). For 
comparison, the corresponding results by the hypervolume-
based greedy method are shown in Fig. 15 (b) for the reference 
point (2, 2, 2). The reference point is specified as (1.2, 1.2, 1.2) 
in the hypervolume-based greedy method in Fig. 15 (c). The 
number in each circle in Fig. 15 shows the order of the selected 
solutions. In Fig. 15 (a), one extreme solution at the top of the 
Pareto front is first selected whereas one solution in the center 
region is first selected in Fig. 15 (b) and Fig. 15 (c). 

Figure 15 shows that uniformly distributed solution sets are 
not always obtained in a greedy manner. In Fig. 15 (a) and Fig. 
15 (b), uniformly distributed solution sets are obtained only 
when the number of selected solutions is 4 and 10. Those 
solution sets are highlighted in Fig. 15. Moreover, independent 
of the number of selected solutions, uniform solution sets are 
not obtained in Fig. 15 (c). This is because the reference point r 
= (1.2, 1.2, 1.2) is not appropriate for greedy selection. These 
observations in Fig. 15 suggest a future research topic: 
proposal of subset selection methods which can efficiently 
select an arbitrarily number of uniformly distributed solutions. 

Whereas subset selection has mainly been studied for the 
hypervolume indicator in the literature, other indicators can be 
also used for subset selection such as IGD [45] and IGD+ [46]. 
The choice of an indicator for subset selection is closely related 
to that for performance comparison, which is discussed in the 
next section.  
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(a) Results of the distance-based greedy method. 
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(b) Results of the hypervolume-based greedy method (r = 2). 
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(c) Results of the hypervolume-based greedy method (r = 1.2). 

Fig. 15. Illustrations of greedy subset selection. Subset selection is 
performed from 5050 uniformly distributed Pareto optimal solutions.  

Performance comparison after selecting solution subsets of 
the pre-specified size from all the evaluated solutions suggests 
a new framework for EMO algorithm design where all the 
evaluated solutions are stored in an unbounded external archive 
separately from the current population [47]-[49]. Most EMO 
algorithms have been designed to find a good final population. 
However, if a subset of all the evaluated solutions is selected as 
the final result, it is not needed to find a good final population 
since the final population is not the final result in the new 
framework. Moreover, storing a good solution set as the 
current population is not always needed. This increases the 
flexibility in EMO algorithm design. Actually, different 
algorithm configurations of MOEA/D were obtained using a 
hyper-heuristic algorithm [49] depending on the performance 
evaluation scenario: the final population-based evaluation and 
the selected solution subset-based evaluation. 

It is usually assumed in the EMO community that non-
dominated solutions are presented as the final result to the 
decision maker. However, if hundreds of thousands of non-
dominated solutions are obtained (see Fig. 14), it is not likely 
that the decision maker wants to examine all of those solutions. 
Thus, their subset is selected and shown to the decision maker. 
In this case, one unexplored research topic is the explanation of 
why the presented solution subset is selected [50]. Whereas 
this issue has not been discussed in the literature, clear 
explanations about solution subset selection are important to 

improve the practical applicability of EMO algorithms to real-
world tasks. When hundreds of thousands of non-dominated 
solutions are obtained, it is likely that the decision maker wants 
to examine only its subset (e.g., 10, 100 or 1000 solutions). At 
the same time, he/she may want to know the reason why the 
presented subset is selected. 

To summarize this section, it is important to compare EMO 
algorithms under multiple population size specifications since 
different algorithms work well under different specifications. 
When different population size specifications are used for 
different EMO algorithms, fair comparison can be performed 
by selecting a pre-specified number of solutions from the final 
population or from all the evaluated solutions in each run of 
each algorithm. 

IV. CHOICE OF PERFORMANCE INDICATORS 

For performance comparison, the hypervolume [24] and 
IGD [45] indicators are often used. However, as shown in this 
section, different results are obtained depending on the 
reference point specification for hypervolume calculation and 
the reference point set specification for IGD calculation. The 
best solution set for each indicator is not always a uniform 
solution set which fully covers the entire Pareto front. 

A. Difficulties in the Use of Hypervolume 
One reason for the frequent use of the hypervolume 

indicator is that no other indicator is known as Pareto 
compliant [51]. Roughly speaking, comparison results between 
two solution sets by a Pareto compliant indicator are always 
consistent with Pareto dominance-based comparison results. 
Let S1 and S2 be two solution sets where S1 is better than S2 
based on the Pareto dominance relation (see [16] for the 
“better” relation between solution sets). In this case, S1 is 
always evaluated as better than S2 by a Pareto compliant 
indicator. The hypervolume indicator is Pareto compliant 
whereas IGD is not. That is, S1 always has a better 
hypervolume value than S2 in the above-mentioned case while 
S1 can have a worse IGD value than S2. This issue will be 
further discussed later for IGD.  

For a two-objective linear Pareto front, it has been 
theoretically shown that a uniform solution set is optimal for 
hypervolume maximization [52]-[54]. Let us consider the 

optimal distribution of  solutions on a linear Pareto front for 
hypervolume maximization with the reference point r = (r, r). 
In Fig. 16, it is assumed that the Pareto front is a line between 

(0, 1) and (1, 0). When the inequality relation r   1 + 1/( −1) 
holds, a uniform solution set including (1, 0) and (0, 1) 
maximizes the hypervolume indicator as shown in Fig. 16 (a). 
Intuitively, Fig. 16 (a) shows the solution set with the best 
diversity and the best uniformity.  

On the other hand, when r < 1 + 1/( −1), the optimal 
distribution of solutions does not include the two extreme 
points (0, 1) and (1, 0), e.g., see Fig. 16 (b) with r = (1, 1). 
Note in Fig. 16 (b) that a uniformly distributed inside solution 
set is optimal. Figure 16 shows that different solution sets are 
optimal depending on the reference point specification. 
However, its effect is not large in the case of a two-objective 
linear Pareto front since the same solution set is always optimal 

when r   1 + 1/( −1). For the case of three or more objectives, 
its effect is totally different depending on the Pareto front 
shape as shown later in this section.  
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(a) r   1 + 1/( −1) = 9/8= 1.125.                     (b) r = (1, 1). 

Fig. 16. Optimal solution distributions for hypervolume maximization 

with nine solutions ( = 9) for different reference points r = (r, r).  
 

For nonlinear Pareto fronts, uniformly distributed solutions 
are not optimal [54]. Figure 17 shows two examples where 
SMS-EMOA [4] is used to find near-optimal distributions of 
nine solutions for DTLZ2 and Minus-DTLZ2 with r = (2, 2). In 
Fig. 17 (a), the two-objective DTLZ2 test problem [17] with no 
distance variable is used. Since the number of distance 
variables is zero, all feasible solutions are Pareto optimal (i.e., 
they are always on the Pareto front). Thus, the role of SMS-
EMOA is to find the best distribution of nine solutions. The 
same setting as in the previous sections is used in Fig. 17 

except for the population size ( = 9) and the termination 
condition (1,000,000 solution evaluations). To find a near-
optimal distribution, the best solution set is selected from ten 
runs of SMS-EMOA. Figure 17 (a) shows the obtained solution 
set, which can be viewed as being very close to the optimal 
distribution since it is obtained using large computation load 
(i.e., 10 independent runs with 1,000,000 solution evaluations).  
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     (a) Concave front (DTLZ2).      (b) Convex front (Minus-DTLZ2).  

Fig. 17. Optimal distributions of nine solutions for hypervolume 
maximization for the reference point r = (2, 2). 

In the same manner, Fig. 17 (b) is obtained on the two-
objective Minus-DTLZ2 test problem [23] with no distance 
variable. Figure 17 shows that the optimal distribution of 
solutions is not uniform on nonlinear Pareto fronts. More 
solutions are located around the center than the two extreme 
points (1, 0) and (0, 1) in Fig. 17. For the convex Pareto front 
in Fig. 17 (b), the two extreme points are not obtained. For 
example, the right-bottom point in Fig. 17 (b) is not (1, 0). This 
is because the two extreme points of the convex Pareto front do 
not have large hypervolume contributions [54], [55].  

The non-uniformity of optimal distributions is more clearly 
demonstrated in Fig. 18 for three-objective problems. SMS-
EMOA is used in the same manner as in Fig. 17 except for the 

population size (i.e.,  = 9 in Fig. 17 and  = 45 in Fig. 18). 
Figure 18 (a) shows the obtained result for three-objective 
DTLZ2 with a concave Pareto front, and Fig. 18 (b) shows the 

obtained result for three-objective Minus-DTLZ2 with a 
convex Pareto front. 

                

                 (a) DTLZ2.                                   (b) Minus-DTLZ2.  

Fig. 18. Hypervolume optimal distributions of 45 solutions for r = (2, 
2, 2).  

 
For comparison, two solution sets are generated using the 

45 uniform weight vectors of Das & Dennis [44]. Figure 19 (a) 
is generated by calculating the intersection between the Pareto 
front of DTLZ2 and each weight vector. Figure 19 (b) is an 
inverted version of Fig. 19 (a). Intuitively, the solution sets in 
Fig. 19 are better than those in Fig. 18. However, each solution 
set in Fig. 18 has a better hypervolume value than the 
corresponding solution set in Fig. 19. These examples suggest 
that hypervolume-based comparison can be inconsistent with 
our intuition.  

 

               

                 (a) DTLZ2.                                   (b) Minus-DTLZ2.  

Fig. 19. Solution sets generated by the 45 uniform weight vectors. 

Next, dominant effects of the reference point are 
demonstrated in the case of inverted triangular Pareto fronts. 
For this purpose, four solution sets in Fig. 20 are generated on 
the Pareto front of the normalized three-objective Minus-
DTLZ1 test problem. Its Pareto front satisfies the following 
relations: f1 + f2 + f3 = 2 and 0   fi   1 (i = 1, 2, 3). In Fig. 20 
(a), 66 solutions are uniformly generated. In Fig. 20 (b), 105 
solutions are first uniformly generated. Next, 39 boundary 
solutions are removed. As a result, Fig. 20 (b) includes 66 
inside solutions. In Fig. 20 (c), 36 solutions are first uniformly 
generated. Next, 21 boundary solutions are removed from the 
generated solutions to use the 15 inside solutions. Then, 51 
uniformly distributed boundary solutions are added to the 15 
inside solutions. In Fig. 20 (d), 66 boundary solutions are 
uniformly generated. 

Intuitively, it is clear that Fig. 20 (a) is the best in Fig. 20. 
However, when the reference point is the same as or very close 
to the nadir point (1, 1, 1), Fig. 20 (b) is evaluated as the best. 



By increasing the distance from the nadir point to the reference 
point (e.g., r = (10, 10, 10)), the solution set in Fig. 20 (d) can 
have the best hypervolume value. For further discussions, the 
four solution sets in Fig. 20 are compared using 1001 reference 
point specifications: r = (r, r, r) = (1, 1, 1), (1.01, 1.01, 1.01), 
(1.02, 1.02, 1.02), ..., (10, 10, 10). Table 1 summarizes 
comparison results. In Table 1, different solution sets are 
evaluated as the best for different reference points. The 
solution set in Fig. 20 (a) has the best hypervolume value only 
when 1.06   r   1.29. 

 

    
(a) Well-distributed solutions.                       (b) Only inside solutions.  

    

(c) Mainly boundary solutions.                  (d) Only boundary solutions. 

Fig. 20. Four solution sets with 66 solutions on an inverted triangular 
linear Pareto front.  
 

Table 1. The best solution set among Fig. 20 (a)-(d) for each reference 
point specification: r = (r, r, r).  

Reference point: r  [1, 1.05] [1.06, 1.29] [1.30, 6.08] [6.09, 10] 

Best solution set (b) (a) (c) (d) 

 
Figure 20 and Table 1 clearly demonstrate dominant effects 

of the reference point on hypervolume-based comparison 
results. However, its importance has not always been well 
recognized [55] since its effect is small for test problems with 
triangular Pareto fronts (e.g., almost all DTLZ and WFG test 
problems). If the Pareto front in Fig. 20 is rotated (i.e., if the 
triangular linear Pareto front is used), Fig. 20 (a) is the best for 
all specifications of the reference point in Table 1.  

In general, different comparison results are obtained from 
different reference point specifications. Thus, our suggestion is 
to use multiple specifications (e.g., r = 1.2, 2.0). If the same 
comparison results are obtained from different specifications, 
the results seem to be reliable. If different comparison results 
are obtained, it is advisable to use an additional indicator.  
 
B. Difficulties in the Use of IGD 

The IGD indicator [45] is also frequently used for 
performance comparison. One difficulty is that IGD is not 

Pareto compliant. Another difficulty is that calculated IGD 
values are strongly influenced by the reference point set 
specification. These two difficulties are explained in Fig. 21 
where two solution sets A and B are compared. In Fig. 21 (a), 
13 reference points, which maximize the hypervolume value, 
are generated in the same manner as in Fig. 16 and Fig. 17. 
That is, their distribution is hypervolume optimal. In Fig. 21 
(b), they are generated uniformly. Under these two 
specifications of the reference point set, different solution sets 
have better IGD values in Fig. 21: A is better in Fig. 21 (a) 
whereas B is better in Fig. 21 (b). Figure 21 shows that 
different reference point sets for IGD calculation lead to 
different IGD-based comparison results. This issue is further 
discussed later. 
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(a) HV-optimal reference points.         (b) Uniform reference points. 

IGD(A): 0.2841, IGD(B): 0.2886.       IGD(A): 0.3032, IGD(B): 0.2958.  

Fig. 21. Illustration of IGD-based performance comparison. In (a), 
solution set A has a better (i.e., smaller) IGD value. However, in (b), B 
has a better IGD value. Pareto dominance-based comparison shows 
that A is better than B. 

 
Between the two solution sets A and B in Fig. 21, every 

solution in B is dominated by at least one solution in A. Thus, 
the “better” relation [16] holds: A is better than B. However, in 
Fig. 21 (b), B has a smaller IGD value than A. This observation 
shows that IGD is not a Pareto compliant indicator. It should 
be noted that solution set A always has a better hypervolume 
value than B independent of the reference point specification 
(as long as it is not too close to the Pareto front). A modified 
indicator IGD+ [46] was proposed, which is weakly Pareto 
compliant (i.e., which never gives a worse evaluation to a 
better solution set). When A is better than B as in Fig. 21, a 
weakly Pareto compliant indicator can give the same 
evaluation to the two solution sets (whereas it never gives a 
worse evaluation to the better solution set A). This is the 
difference between “weakly Pareto compliant” and “Pareto 
compliant”. A Pareto compliant indicator such as hypervolume 
always gives a strictly higher evaluation to a better solution set. 

When two solution sets are well converged to the Pareto 
front, the Pareto dominance-based “better” relation is not likely 
to hold between them (i.e., either solution set is not likely to be 
better than the other). For two solution sets of a many-objective 
problem, the better relation is not likely to hold between them. 
Thus, the Pareto incompliance property of IGD is not always a 
serious problem.  

The main difficulty in the IGD indicator is how to specify 
the reference point set since it has large effects on performance 
comparison results. Figure 22 shows three solution sets with 78 



solutions in (a)-(c) and a reference point set with 91 points in 
(d) on a triangular linear Pareto front of a three-objective 
problem (e.g., the normalized DTLZ1 problem). Figures 22 (a) 
and 22 (d) are generated using Das & Dennis method [44] 
where the integer parameter H is specified as H = 11 and H = 
12, respectively. In Das & Dennis method, all sides of the 
triangle are evenly divided into H intervals. Solution set C in 
Fig. 22 (c) is generated from Fig. 22 (d) by removing the 
bottom 13 solutions. Solution set B in Fig. 22 (b) is generated 
by moving down each solution in Fig. 22 (c) to the center of 
the neighboring three reference points. The IGD value of each 
solution set is shown in parentheses in Fig. 22 (a)-(c).  

 

           
(a) Solution set A (IGD: 0.0421).        (b) Solution set B (IGD: 0.0680). 

           
(c) Solution set C (IGD: 0.0168).         (d) Reference point set (H = 12). 

Fig. 22. Three solution sets with 78 solutions and 91 reference points. 
The IGD value of each solution set is shown in parentheses.  

 
Intuitively, Fig. 22 (a) looks the best since solutions are 

uniformly distributed over the entire Pareto front. Solution set 
C in Fig. 22 (c) looks the worst since solutions are biased. 
However, in Fig. 22, solution set C has the best (i.e., smallest) 
IGD value. This is because each solution in C overlaps with the 
corresponding reference point in Fig. 22 (d). This example 
demonstrates that comparison results based on IGD values can 
be counter-intuitive.  

For further discussion on this issue, the three solution sets 
are compared by generating various reference point sets by Das 
& Dennis method using different values of H (e.g., H = 12 in 
Fig. 22 (d)). Table 2 summarizes experimental results.  

When H = 11 in the third row of Table 2, the generated 
reference point set and solution set A are exactly the same. 
Thus the IGD value of A is zero. In this case, A is clearly the 
best and C is clearly the worst (based on the calculated IGD 
values), which is consistent with our intuition. However, 
performance comparison results in Table 2 are different 
depending on the reference point set specification. In particular, 
when the number of reference points is small (e.g., 66, 78, 91 
in Table 2), their specification has a large effect on IGD-based 
comparison results. When a large number of reference points 

are used in Table 2 (e.g., 20100 reference points), solution set 
B has the best (i.e., smallest) IGD value. Moreover, in this case, 
the IGD values of A and C are almost the same (e.g., 0.0449 
and 0.0451 when 20100 reference points are used). These 
results are not consistent with our intuitive evaluation of the 
three solution sets in Fig. 22 (a)-(c). 

 
Table 2. IGD values of the three solution sets in Fig. 22 calculated for 
different reference point sets. The worst and best results for each 
reference point set are highlighted in blue and red fonts, respectively.  

Value of H 
Number of 
reference 

points 

Solution  
set A 

Solution  
set B 

Solution 
set C 

10 66 0.0415 0.0401 0.0519 

11 78 0.0000 0.0354 0.0509 

12 91 0.0421 0.0680 0.0168 

13 105 0.0423 0.0507 0.0496 

14 120 0.0425 0.0467 0.0491 

15 136 0.0427 0.0453 0.0488 

16 153 0.0428 0.0450 0.0481 

17 171 0.0429 0.0436 0.0478 

18 190 0.0431 0.0436 0.0474 

19 210 0.0432 0.0428 0.0472 

20 231 0.0433 0.0428 0.0472 

50 1275 0.0444 0.0412 0.0457 

100 5050 0.0447 0.0408 0.0453 

200 20100 0.0449 0.0406 0.0451 

 

One characteristic feature of the IGD indicator is that 
uniformly distributed solution sets are always highly evaluated, 
which is independent of the Pareto front shape. Using the IGD 
indicator in the SMS-EMOA algorithm, near-optimal solution 
sets of DTLZ2 with two and three objectives can be found as in 
Fig. 17 and Fig. 18. In computational experiments on each test 
problem, 10,000 solutions on the entire Pareto front are 
uniformly generated as reference points. The obtained IGD 
optimal distributions are shown in Fig. 23 where solutions are 
uniformly distributed. This means that uniform solution sets 
are highly evaluated by IGD. However, the IGD optimal 
distributions include no boundary solutions (i.e., no extreme 
solutions in Fig. 23 (a), no boundary solutions in Fig. 23 (b)). 
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     (a) Two-objective DTLZ2.                (b) Three-objective DTLZ2.  

Fig. 23. IGD optimal distributions of (a) nine solutions and (b) 45 
solutions on nonlinear Pareto fronts. Uniformly distributed 10,000 
reference points on the entire Pareto front are used for IGD calculation.  

 
As in computational experiments in Fig. 23, a large number 

of uniformly distributed reference points are usually used for 
IGD calculation. Let us consider the normalized two-objective 



linear Pareto front again, which is a straight line between (1, 0) 

and (0, 1). For this Pareto front, the optimal distribution of  
solutions for IGD minimization is the uniform distribution on 

the line segment between (1/2, 1 − 1/2) and (1 − 1/2, 1/2) 
when an infinitely large number of uniform reference points 
are used for IGD calculation [56]. That is, the IGD optimal 
distribution does not include the two extreme points (1, 0) and 
(0, 1). Independent of the curvature property (i.e., linear, 
convex, concave) of the Pareto front, the IGD optimal 
distribution does not include the two extreme points. In the 
case of three or more objectives, the IGD optimal distribution 
does not include boundary solutions when an infinitely large 
number of uniform reference points are used. This is the reason 
why solution set B with no boundary solutions is the best in 
Table 2 for a large number of reference points.  

As shown by the experimental results in Fig. 22 and Table 
2, the reference point specification has large effects on IGD-
based comparison results especially when a small number of 
reference points are used. Our suggestion is to use many 
reference points to avoid unexpected biases caused by the 
overlapping between reference points and solutions (e.g., lucky 
matching of obtained solutions with the given reference points 
in Fig. 22 (c), unlucky discordance between them in Fig. 22 
(b)).  

Since the hypervolume and IGD indicators have clearly 
different optimal distributions of solutions, it is likely that 
different comparison results will be obtained from them. Thus, 
it is advisable to use both of them in performance comparison. 
When the use of the hypervolume indicator is unrealistic for 
many-objective problems, the IGD+ indicator can be used since 
the hypervolume and IGD+ indicators have similar optimal 
distributions [57], [58]. 

Since uniformly distributed and fully spread solution sets 
over the entire Pareto front (e.g., Fig. 22 (a)) often have worse 
IGD values than inside solution sets (e.g., Fig. 22 (b)), it is a 
good idea to visually examine each solution set using a parallel 
coordinate graph [59]. The spread of solutions can be visually 
examined for each objective even for many-objective problems. 
The two solution sets in Fig. 22 (a) and Fig. 22 (b) are shown 
using parallel coordinate graphs in Fig. 24 (a) and Fig. 24 (b), 
respectively. It is clear in Fig. 24 that Fig. 24 (b) has a smaller 
spread along each axis than Fig. 24 (a). 
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        (a) Solution set in Fig. 22 (a).           (b) Solution set in Fig. 22 (b). 

Fig. 24. Parallel coordinate graphs of the two solution sets in Fig. 22. 

One difficulty of parallel coordinate graphs is that they are 
often misleading about the uniformity of solutions. To clearly 
demonstrate this issue, the four solution sets in Fig. 20 are 
compared using parallel coordinate graphs in Fig. 25. 

In Fig. 20, solutions in Fig. 20 (a) are well distributed while 
all solutions in Fig. 20 (d) are boundary solutions. However, 

Fig. 25 gives the following impression: Fig. 25 (d) has better 
uniformity than Fig. 25 (a)-(c). As explained in Table 1 in 
Section IV, the boundary solution set in Fig. 25 (d), i.e., in Fig. 
20 (d), has the best hypervolume value if the reference point is 
far away from the Pareto front. Thus, if the parallel coordinate 
graph and the hypervolume indicator are used for comparing 
the four solution sets in Fig. 25, it is possible that Fig. 25 (d) is 
evaluated as the best solution set. However, the IGD value of 
Fig. 25 (d) is the worst among the four solution sets when a 
large number of uniform reference points are used for IGD 
calculation (since all solutions in Fig. 25 (d) are on the 
boundary of the Pareto front as shown in Fig. 20 (d)). These 
discussions support the necessity of using multiple indicators. 
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      (c) Solution set in Fig. 20 (c).           (d) Solution set in Fig. 20 (d). 

Fig. 25. Parallel coordinate graphs of the four solution sets in Fig. 20. 

In this section, the evaluation of solution sets has been 
discussed using performance indicators by implicitly assuming 
that no preference information is available from the decision 
maker. However, real-world application problems usually have 
a decision maker. It is likely that the decision maker has some 
explicit or implicit preference about solution sets. In this 
situation, the choice of a performance indicator should be 
consistent with the preference of the decision maker. Recently, 
the choice of a performance indicator was discussed based on 
the decision maker’s preference for multi-objective search-
based software engineering (SBSE) problems in [60]. Practical 
guidelines on the choice of an indicator were shown for various 
types of preference information together with a review on the 
use of performance indicators for multi-objective SBSE 
problems.  

V. CHOICE OF TEST PROBLEMS 

As shown in Figs. 2-5 in Section II, the choice of test 
problems has large effects on performance comparison results. 
Recently, DTLZ [17] and WFG [18] have been frequently used 
as scalable problems for many-objective optimization. In [23], 

many-objective algorithms (NSGA-III, MOEA/DD,  -DEA) 
were compared with classic algorithms (NSGA-II and four 
implementations of MOEA/D) using various test problems (i.e., 
DTLZ1-4, WFG1-9, Minus-DTLZ1-4 and Minus-WFG1-9) 



with 3, 5, 8 and 10 objectives. In Table 3 and Table 4, the 
experimental results in [23] are summarized for the four groups 
of test problems. For each group of test problems, the 
percentage of test problems on which each algorithm shows the 
best results is calculated. For example, DTLZ1-4 includes 16 
problems (4 problems with 3, 5, 8 and 10 objectives). When 
the hypervolume indicator was used to evaluate each algorithm, 
MOEA/DD showed the best performance on 12 out of the 16 
DTLZ1-4 test problems in [23]. That is, MOEA/DD showed 
the best performance on 75% test problems. Thus, “75.00” is 
given in the corresponding cell in Table 3. In this manner, 
Table 3 and Table 4 are created from the reported results in 
[23] with respect to the hypervolume and IGD indicators, 
respectively. 

Table 3. Percentage of test problems on which each algorithm has the 
best average hypervolume value among the eight algorithms for the 
reference point (1.1, ..., 1.1). The percentage is calculated for each of 
the four test problem suites (reproduced from Table III and Table IV 
of [23]). The highest percentage is highlighted in red font. 

Algorithm DTLZ1-4 WFG1-9 
Minus- 

DTLZ1-4 
Minus- 

WFG1-9 

NSGA-III 6.25 8.33 31.25 38.89 

 -DEA 18.75 66.67 12.50 11.11 

MOEA/DD 75.00 0.00 0.00 0.00 

MOEA/D-PBI 0.00 0.00 18.75 0.00 

MOEA/D-Tch 0.00 13.89 0.00 8.33 

MOEA/D-WS 0.00 0.00 18.75 0.00 

MOEA/D-IPBI 0.00 0.00 0.00 11.11 

NSGA-II 0.00 11.11 18.75 30.56 

 
Table 4. Percentage of test problems on which each algorithm has the 
best average IGD value among the eight algorithms in each of the four 
test problem suites (reproduced from Table VI and Table VII of [23]). 
The highest percentage is highlighted in red font. 

Algorithm DTLZ1-4 WFG1-9 
Minus- 

DTLZ1-4 
Minus- 

WFG1-9 

NSGA-III 6.25 16.67 12.50 5.56 

 -DEA 18.75 44.44 0.00 0.00 

MOEA/DD 62.50 11.11 0.00 0.00 

MOEA/D-PBI 12.50 5.56 0.00 0.00 

MOEA/D-Tch 0.00 5.56 0.00 8.33 

MOEA/D-WS 0.00 0.00 6.25 0.00 

MOEA/D-IPBI 0.00 0.00 12.50 16.67 

NSGA-II 0.00 16.67 68.75 69.44 

 
In Table 3 and Table 4, MOEA/DD is the best for DTLZ1-

4, and -DEA is the best for WFG1-9. However, NSGA-II and 
NSGA-III show the best performance for their minus versions. 
These tables show that totally different comparison results can 
be obtained from different test problems. These tables also 
show that different results can be obtained from different 
indicators. 

When the 10-objective HTNY19 test problem is used, none 

of the above-mentioned four algorithms (MOEA/DD, -DEA, 
NSGA-II and NSGA-III) works well. Their convergence to the 
Pareto front is very slow, which is similar to MOEA/D-PBI 
and MOEA/D-Tch in Fig. 4 in Section II. In [21], much better 
results were obtained for 10-objective HTNY19 by a modified 

NSGA-II algorithm, MOEA/D-WS, and MOEA/D-STM [61] 
than the above-mentioned four algorithms. These results show 
large effects of test problems on comparison results.  

For fair comparison, it is advisable to use various test 
problems. Ideally, they have various characteristic features 
with respect to the following aspects: the number of objectives, 
the number of decision variables, the Pareto front curvature 
(linear, convex, concave), the Pareto front shape (triangular, 
inverted triangular, degenerate, disconnected), the difficulty of 
convergence, the difficulty of diversification, and the necessity 
of normalization. Since most test problems in DTLZ and WFG 
have similar and somewhat unrealistic properties [62], there is 
a need to create new test suites with various characteristic 
features (e.g., [63]). It is especially important to create a new 
test suite including various realistic test problems (e.g., [64]).  

It is not likely that a single EMO algorithm works well on 
all test problems with different characteristics. Thus, it is an 
interesting research topic to create a recommendation system 
which suggests an appropriate EMO algorithm for a given 
problem based on its characteristics. Automatic design is also 
an interesting research direction to create a new algorithm 
using the characteristics of the given problem. There exist 
many other interesting and important research directions such 
as the design of a general-purpose robust EMO algorithm 
which works well on various test problems, and the design of a 
specialized EMO algorithm which works well on a special 
application task. 

VI. CONCLUSIONS 

This paper has explained various difficulties in fair 
performance comparison of EMO algorithms, which are related 
to the termination condition, the population size, performance 
indicators, and test problems. Those difficulties are not clear 
for the frequently-used DTLZ and WFG test suites. However, 
as pointed out in this paper, they become clear when test 
problems with different characteristics (e.g., different shape of 
Pareto fronts, different difficulty of convergence) are used for 
performance comparison. From the discussions in this paper, 
our suggestions are as follows: 

(1) Evaluation of each algorithm as an anytime algorithm 
under multiple termination conditions. 

(2) Evaluation of each algorithm under different population 
size specifications. 

(3) Evaluation of each algorithm using selected subsets from 
all the evaluated solutions. 

(4) Use of multiple reference point specifications in the 
hypervolume indicator. 

(5) Use of a large number of uniformly distributed reference 
points over the entire Pareto front in the IGD indicator.  

(6) Use of the IGD+ indicator in the same manner as in (5) 
when the use of the hypervolume indicator is not realistic 
for many-objective problems. 

(7) Visual examination of each solution set in addition to its 
evaluation using multiple performance indicators. 

(8) Use a number of test problems with various characteristics 
including realistic test problems. 

As demonstrated in this paper, different comparison results 
will be obtained from these suggestions (e.g., from the use of 
multiple performance indicators and different test problems). 
Such comparison results will suggest interesting research 



directions for future studies on new algorithm development, 
indicator analysis, and new test problem design. All of them 
will support the future growth of the EMO research field. Of 
course, there exist a number of other important research topics 
related to performance comparison of EMO algorithms, which 
have not been discussed in this paper. The following are some 
examples: the handling of highly multi-modal problems where 
totally different solution sets can be obtained from different 
runs due to stochastic nature of evolutionary algorithms, the 
handling of multi-modal multi-objective optimization where 
the distributions of solutions in both the objective and decision 
spaces are important, parameter specifications in each EMO 
algorithm for each test problem, the design of robust 
performance indicators which are not sensitive to related 
specifications, the evaluation of the robustness of solution sets, 
and the utilization of preference information in solution set 
evaluation.  
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