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Abstract—A real-world multiobjective optimization problem
(MOP) usually has differently-scaled objectives. Objective space
normalization has been widely used in multiobjective opti-
mization evolutionary algorithms (MOEAs). Without objective
space normalization, most of the MOEAs may fail to obtain
uniformly-distributed and well-converged solutions on MOPs
with differently-scaled objectives. Objective space normalization
requires information on the Pareto front range, which can be
acquired from the ideal and nadir points. Since the ideal and
nadir points of a real-world MOP are usually not known a priori,
many recently proposed MOEAs tend to estimate and update the
two points adaptively during the evolutionary process. Different
methods to estimate ideal and nadir points have been proposed in
the literature. Due to inaccurate estimation of the two points (i.e.,
inaccurate estimation of the Pareto front range), objective space
normalization may deteriorate the performance of an MOEA.
Different methods have also been proposed to alleviate the
negative effects of inaccurate estimation. This paper presents a
comprehensive survey of objective space normalization methods,
including ideal point estimation methods, nadir point estimation
methods, and different methods based on the utilization of the
estimated Pareto front range.

Index Terms—Evolutionary multiobjective optimization
(EMO), objective space normalization, nadir point, ideal point,
dominance resistant solution (DRS).

I. INTRODUCTION

IN the real world, it is not uncommon to face problems

with multiple objectives, which are called multiobjective

optimization problems (MOPs). The objectives of a real-world

MOP are often of very different scales1, such as the portfolio

optimization problem [4] and the car side impact problem [5].
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1It is worth noting that there exist real-world MOPs whose ideal and nadir
points are known, such as the biobjective feature selection problem [1], [2].
For some MOPs, normalization is not needed, such as the knapsack problem
[3].

In a recently presented real-world MOP test suite [6], the

approximated Pareto fronts of the 16 real-world MOPs are

shown to have differently-scaled objectives. Since differently-

scaled objectives are common in the real world, they are

widely adopted in test problem design [7], [8]. Many synthetic

test problems have this feature, such as WFG [7], MaF4

and MaF5 [9], and MaOP1-10 [10]. Although the popularly

used DTLZ test suite [11] does not have differently-scaled

objectives, DTLZ problems are often rescaled to emphasize

this feature (e.g., SDTLZ and DSDTLZ [12]).

The complexity and variety of MOPs result in the emer-

gence of numerous multiobjective evolutionary algorithms

(MOEAs). An important issue in multiobjective optimization

is to give equal emphasis to each objective. The importance of

normalization has been emphasized in many early works [12].

When each objective has a totally different range of objective

values, some MOEAs may fail to give equal emphasis to

each objective and may not be able to obtain the desired

performance since some objectives are predominant over oth-

ers [13]. To deal with MOPs whose objectives are badly

scaled, objective space normalization is commonly used in the

field of multiobjective optimization. Fig. 1 shows a standard

framework of MOEAs, in which objective space normalization

is applied before environmental selection. A normalization

method of an MOEA is an independent algorithmic component

[14], which consists of three parts: ideal point estimation, nadir

point estimation, and the use of the estimated Pareto front

range for normalization.

The Pareto front is bounded by the ideal point z∗ (i.e.,

lower bound) and the nadir point znad (i.e., upper bound)2,

as illustrated in Fig. 2 (a). These two points can offer the

information on the ranges of the objective function values over

the Pareto optimal solutions. Along with the ideal point, the

nadir point can be used to normalize the objective space (see

Fig. 2 (b)), which helps MOEAs to be applied more reliably

to problems involving noncommensurable objective functions.

It should be noted that the ideal and nadir points are not just

for objective normalization. Their estimation has also been

studied independent of normalization and can be used for

other purposes. For example, some interactive multiobjective

approaches (e.g., NAUTILUS [15]) need an estimated nadir

point as an input. In this paper, we focus on the use of them

for normalization. One can refer to [16]–[18] for their use for

other purposes.

A straightforward way to normalize the objective space is

2Throughout this paper, the minimization of all objective is assumed.
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Fig. 1. Standard framework of MOEAs. Objective space normalization is an independent algorithmic block that is applied before environmental selection. A
normalization method consists of ideal point estimation, nadir point estimation, and use of the estimated range.

searching for the ideal and nadir points before the evolu-

tionary process. The ideal point can be found by minimizing

each objective function individually over the decision space.

Unfortunately, the nadir point is much more difficult to be

estimated because it requires the knowledge of the Pareto

front. There is no constructive way to obtain the exact nadir

point for a nonlinear problem without finding the entire Pareto

front [16], [17], [19]. Many methods have been proposed to

estimate the nadir point in an offline manner (i.e., prior to the

evolutionary process). One category (called “surface-to-nadir”)

of these offline methods uses an MOEA that tries to search

for the entire Pareto front and then calculate the nadir point

from the approximated Pareto front. It was argued that the

surface-to-nadir approach is not recommended since searching

for the entire Pareto front can be difficult and computationally

expensive, especially when the number of objectives is large.

Moreover, an MOEA itself needs the nadir point to facilitate

the evolutionary process. One can refer to [16]–[18] for more

details on offline nadir point estimation methods.

In the evolutionary multiobjective optimization (EMO) field,

the ideal and nadir points are often adaptively estimated

during the execution of an MOEA in an online manner, rather

than before its execution in an offline manner [20], [21]. At

each generation, objective space normalization is performed

with the estimated ideal and nadir points, as illustrated in

Fig. 1. For MOEAs with weight vectors or reference vectors,

instead of normalizing the solutions in the objective space,

the weight/reference vector scaling can be an alternative

way of normalization, as illustrated in Fig. 2. Weight vector

modification has almost the same effect as the objective

space normalization in obtaining a uniformly distributed set
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Fig. 2. Illustration of Pareto optimal solutions specified by different weight
vectors on a Pareto front (PF) with different scales: (a) Original space and
original weight vectors, (b) Normalized space and original weight vectors,
and (c) Original space and modified weight vectors. The same solution sets
are obtained in (b) and (c).

of solutions as explained in Fig. 2 (b) and (c).

Objective space normalization can be necessary for

an MOEA with either the decomposition-based, Pareto

dominance-based, or indicator-based framework. For

decomposition-based MOEAs, objective space normalization

is particularly necessary since both the association-based

partition process and the elitism selection strategy are

performed in the normalized space [22], [23]. MOEA/D with

PBI (MOEA/D-PBI), as one representative decomposition-

based MOEA, shows good performance in dealing with

problems having similar objective ranges but fails on

problems whose objectives are differently scaled. Uniformly

distributed solutions are not obtained by MOEA/D-PBI on

these badly-scaled problems because the original MOEA/D

algorithm [20] has no normalization mechanism [10], [24].
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Fig. 3 shows the results in the normalized objective space

obtained by MOEA/D-PBI with and without normalization

on the three-objective WFG4 problem. MOEA/D-PBI

without normalization obtains many solutions around the

bottom-left corner of the Pareto front, while MOEA/D-PBI

with the normalization method in [12] obtains uniformly-

distributed solutions over the entire Pareto front. In the

literature, we can also observe that normalization methods

are almost always used in other decomposition-based

MOEAs (e.g., NSGA-III [21], EFR-RR [25], θ-DEA [26],

RPD-NSGA-II [27], MOEA/D-LWS [28], SPEA/R [29],

ASEA [30], etc.) when handling optimization problems

with differently-scaled objectives. To further show the

importance of normalization, we have examined the effect

of normalization on the performance of MOEAs from the

three classes (i.e., decomposition-based, Pareto dominance-

based, and indicator-based MOEAs) on a set of real-world

MOPs recently presented in [6]. Due to the page limit, all

the results and analyses are included in Section I of the

supplementary document. The experimental results clearly

show that normalization can be necessary for an MOEA with

either the decomposition-based, Pareto dominance-based, or

indicator-based framework in order to deal with real-world

MOPs.

The normalization methods in MOEAs can also have neg-

ative effects on the performance of these MOEAs when ideal

and nadir points are not correctly estimated. It was reported

that some MOEAs (e.g., MOEA/D [20], EFR-RR [25], GrEA

[31], KnEA [32], and 1by1EA [33]) with normalization meth-

ods can perform well on the badly-scaled problems but might

fail on problems with similar objective ranges [33]. Fig. 4

shows the results obtained by MOEA/D-PBI with and without

normalization on the three-objective DTLZ3 problem. The

original MOEA/D-PBI without normalization obtains well-

distributed solutions, while the normalization method in [12]

deteriorates the performance of the original MOEA/D-PBI

on the three-objective DTLZ3 problem. This is because the

estimated nadir point is likely to be inaccurate at the early

stage of the evolutionary process [12], especially when the

MOP has a vast number of local optima [33]. With the inac-

curately estimated nadir point, the original objective space will

be transformed into wrong scales, which misleads the search

direction and then makes the nadir point estimation even

worse [12], [33], [34]. To avoid such negative effects, different

methods have been proposed in the literature to improve the

quality of the estimated ideal and nadir points (see Sections III

and IV). On the other hand, modified normalization equations

have also been proposed to reduce the negative effect of

inaccurate estimation of the two points (see Section V).

Considering the positive and negative impacts that a nor-

malization method can have on an MOEA’s performance, its

description and implementation should be carefully treated.

The normalization method should be described precisely to

make the experimental results reproducible [35]. It was re-

ported in [36] that there exists inconsistency between the

description of a normalization method in a paper and the actual

implementation in the source code. This inconsistency may

lead to an unfair comparison. As reported in [37], a small
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Fig. 3. Solutions obtained by MOEA/D-PBI with the median hypervolume
value over 21 runs on the three-objective WFG4. Experimental settings are
the same as [12].
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Fig. 4. Solutions obtained by MOEA/D-PBI with the median hypervolume
value over 21 runs on the three-objective DTLZ3. Experimental settings are
the same as [12].

implementation difference of the normalization method in

NSGA-III [21] between Yuan [26] and jMetal (which follows

the early access version of [21]) makes a vast performance

difference. Similarly, in [38], a normalization method is used

in the actual implementation of MOEA/DD [38] but not de-

scribed in its paper. MOEA/DD is often outperformed by other

algorithms on badly-scaled problems since the implementation

of MOEA/DD without normalization is often used [39], [40].

In principle, with a proper normalization method (i.e., a proper

ideal point estimation method, a proper nadir point estimation

method, and a proper way of using the estimated Pareto front

range), an MOEA is able to perform well on MOPs with

differently-scaled objectives [21].

The rest of the paper is organized as follows. Starting

with the necessary preliminary knowledge in Section II, the

paper summarizes and categories a variety of methods for

normalization, focusing on the advantages and disadvantages

of these methods. Studies on ideal point estimation, including

straightforward and modified methods, are surveyed in Sec-

tion III. Studies on nadir point estimation, including straight-

forward, extreme point-based, dominance resistant solution-

aware, convergence-aware, and constraint-aware methods, are

surveyed in Section IV. In Section V, different methods to

reduce the negative effect of inaccurate estimation of the

two points when using the estimated Pareto front range are

surveyed, including straightforward objective space normal-

ization, modified objective space normalization, and weight

vector modification. In Section VI, we further discuss the

effect of normalization. We conclude the survey and provide

several possible future directions in Section VII.
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II. PRELIMINARIES

A. Multiobjective Optimization Problems

A multiobjective optimization problem (MOP) can be math-

ematically formulated as follows:

minimize f(x) = (f1(x), f2(x), . . . , fm(x))
T

,

subject to x ∈ Ω ⊆ R
n,

(1)

where x = (x1, x2, . . . , xn)
T

is a solution in the feasible

region Ω. Here, f : Ω → R
m is an objective vector involving

m conflicting objectives fi to be minimized (i = 1, 2, ...,m),

and R
m is the objective space. Due to the conflicting nature

of the objectives, there is no single optimal solution that can

optimize all the objectives at the same time. Instead, a set

of optimal trade-off solutions is usually obtained where no

single objective can be further improved without deteriorating

at least one of the other objectives. This trade-off relationship

is defined by the following definitions:

Definition 1. Given two solutions x, y ∈ Ω, we say that

x (Pareto) dominates y, denoted by x ≺ y, if and only if

fi(x) ≤ fi(y) for all i = 1, 2, . . . ,m, and f(x) 6= f(y)3.

Definition 2. Given a set P ⊆ Ω, we say that a solution x∗

is a nondominated solution in P if no other solution in P
dominates it. Here, x∗ is a Pareto optimal solution if P = Ω,

and f(x∗) is then called a Pareto optimal objective vector.

Definition 3. The Pareto set, denoted by PS, is a

set of all Pareto optimal solutions: PS = {x ∈
Ω | x is Pareto optimal}, and the Pareto front, denoted by

PF , is a set of all Pareto optimal objective vectors: PF =
{f(x) ∈ R

m | x ∈ PS}.

B. Ideal and Nadir Points

The ideal point z∗ = (z∗1 , z
∗

2 , . . . , z
∗

m)T is an objective

vector consists of the minimum value of each objective over

the decision space Ω, where z∗i = minx∈Ω fi(x), i ∈
{1, 2, . . . ,m}. Hence, the ideal point dominates all the Pareto

optimal solutions x∗ (and all solutions x).

The nadir point znad =
(
znad
1

, znad
2

, . . . , znad
m

)T
is an objective

vector consists of the maximal objective values over the Pareto

set, where znad
i = maxx∈PS fi(x), i ∈ {1, 2, . . . ,m}.

The ideal and nadir points are usually unknown in a real-

world MOP and they need to be estimated due to the necessity

of normalization. Different methods have been proposed to es-

timate them adaptively during the evolutionary process. These

methods will be surveyed in Section III for the ideal point

and Section IV for the nadir point. In this paper, the estimated

ideal and nadir points are denoted by zlb =
(
zlb
1
, zlb

2
, . . . , zlb

m

)T

and zub =
(
zub
1
, zub

2
, . . . , zub

m

)T
, respectively.

C. Objective Space Normalization

Each individual in the current population can be translated

according to the following transformation:

f ′

i(x) = fi(x)− z∗i , (2)

3That is, fi(x) < fi(y) for at least one index i ∈ {1, 2, . . . ,m}.

where i = 1, 2, . . . ,m, and f ′

i(x) is the translated objective.

The true ideal point z∗ becomes the origin of the coordinate

system in the translated objective space.

After the objective value translation, each translated objec-

tive vector f ′

i(x) can be scaled by the following transforma-

tion:

f̃i(x) =
f ′

i(x)

znad
i − z∗i

=
fi(x)− z∗i
znad
i − z∗i

, (3)

where i = 1, 2, . . . ,m, and f̃i(x) denotes the i-th normalized

objective function. The denominator is based on the range of

the original Pareto front. After the objective space scaling, the

Pareto front has the same range [0, 1] on each objective. That

is, the Pareto front is included in the unit hypercube [0, 1]m.

In practice, the true ideal and nadir points are usually

unknown for a real-world MOP. They are usually replaced

by the estimated ideal point zlb and the estimated nadir point

zub in MOEAs. Different variants of Eq. (3) have also been

proposed to avoid the negative effects of using inaccurately

estimated ideal and nadir points. These equations will be

surveyed in Section V.

D. Dominance Resistant Solutions

Dominance resistance phenomena [41], [42] caused by the

increasing number of objectives is known as the main obstacle

of Pareto dominance-based MOEAs in handling MOPs with

more than three objectives. As the number of objectives

increases, the proportion of nondominated solutions in a

population grows enormously [42], [43], i.e., most solutions

become incomparable in terms of the Pareto dominance rela-

tion. Although dominance resistant solutions (DRSs)4 [41] are

far from the Pareto front, they are regarded as nondominated

solutions and cannot be removed by the Pareto dominance re-

lation. The performance of Pareto dominance-based algorithms

can be severely degraded by DRSs even in three-objective

problems [44].

Many test problems are endowed with such DRSs, such as

block-separable problems [41] and mDTLZ [45]. DRSs are

also observed in the frequently-used DTLZ problems [11],

[46], [47]. Wang et al. [45] analyzed the existence conditions

of hardly dominated boundaries. The hardly dominated bound-

ary is a common problem feature existing in many problems,

especially when the number of objectives is large [45].

Most of the existing studies only focus on the detrimental

effect of DRSs in the offspring generation, i.e., an offspring

generated from DRSs by crossover and mutation is likely to

be far away from the Pareto front. Although these solutions

may present good diversity over the objective space, they can

bias the search toward the solutions with the poor proximity to

the Pareto front. It has been reported in many studies [42] that

these DRSs lead to a decline in selection pressure, which slows

down the search process to a certain extent. Consequently, the

obtained solutions may have good diversity over the objective

space but fail to converge toward the Pareto front.

Several attempts are made to relax the strict definition of

Pareto dominance (e.g., α-dominance [41], ǫ-dominance [46],

4DRSs are solutions with extremely good values (i.e., nearly the best values)
in some objectives, but with very poor values in other objectives.
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Fig. 5. Illustration of relationship between DRSs and nadir point estimation.

[48]). It is also reported in [36] that the use of the PBI function

might help reduce the effect of DRSs. In [47], Kondoh et

al. reported that the number of DRSs might be reduced by

discretizing the decision space with a lower precision.

However, the effect of DRSs in nadir point estimation has

rarely been discussed in the literature [45], [49]. One popular

way of estimating the nadir point is to take the maximum

values of nondominated solutions in the current population.

As illustrated in Fig. 5, the estimated nadir point A is far

away from the true nadir point znad due to the existence of

a DRS (i.e., point a). After removing point a, the estimated

nadir point B is much closer to znad. The presence of DRSs

will heavily influence the resulting nadir point, create an

undesirable bias in scaled objective values, and thus imbalance

the diversity. Detection and elimination of DRSs are far from

trivial and further research is required to address this issue.

III. IDEAL POINT ESTIMATION

The normalization methods in MOEAs can have negative

effects on the performance of these MOEAs when ideal

and nadir points are not correctly estimated. In the EMO

field, the ideal point is often estimated adaptively during the

evolutionary process [20], [21]. Compared with nadir point

estimation, the ideal point estimation is much easier [16],

[17]. The estimated ideal point approaches the true ideal point

and settles down very quickly [50]. There are fewer studies

on ideal point estimation than nadir point estimation. In this

section, we review ideal point estimation methods.

A. Straightforward Ideal Point Estimation Methods

Given an initial population P1, the ideal point zlb is esti-

mated by zlb
i = minx∈P1

fi(x), i ∈ {1, 2, . . . ,m}. During the

evolutionary process, the ideal point will be updated at each

generation. Considering the t-th generation, a set of offspring

Qt is generated from the population Pt. Note that Qt can

contain only one offspring if the algorithm has a generation

update mechanism of (µ + 1) type. The ideal point can be

updated in two different manners.

- The ideal point is updated by taking the minimum value

of the ideal point from the previous generation and the

newly generated offspring Qt as shown in Eq. (4). This

method for updating the ideal point has been used in

several state-of-the-art MOEAs, such as MOEA/D [20]

and NSGA-III [21].

zlb
i = min

{
zlb
i , min

x
′∈Q

fi(x
′)

}
, i ∈ {1, 2, . . . ,m}. (4)

B

A𝑓2

𝑓1𝐳𝑎

a

b𝐳𝑏
𝐳𝑐 𝐳𝑑 𝛼

𝛼

𝑓2

𝑓1𝐳𝑎𝐳∗

𝐳𝑐
𝐳𝑏

𝐳𝑑

0(𝐳∗)
Fig. 6. Illustration of ideal point estimation methods. Red points are
nondominated solutions, and black circles are dominated solutions. Dashed
circles a and b are solutions that are generated in previous generations but
not included in the current population. Note that the true ideal point z∗ can
be different from the origin of the objective space. We assume z∗ is the same
as the origin here for illustration.

- The ideal point is updated by taking the minimum value

of the merged population (i.e., the union of the current

population Pt and the newly generated offspring Qt).

This method for updating the ideal point has also been

used in several state-of-the-art MOEAs, such as CDG-

MOEA [51], NSGA-II/SDR [52], and DDEA [53].

zlb
i = min

x∈Pt

⋃
Qt

fi(x), i ∈ {1, 2, . . . ,m}. (5)

The estimation of the ideal point requires O(mN) computa-

tions. The estimated ideal points by Eq. (4) and Eq. (5) can be

the same in some algorithms. For example, in NSGA-II [54],

extreme solutions are in the first nondominated front and have

the largest crowding distance. Thus, they are never removed.

However, in other algorithms (e.g., MOEA/D [20] and NSGA-

III [21]), it is not guaranteed that solutions contributing to

the ideal point always survive during the evolutionary process

[36], [55]. For this reason, the ideal point updated by Eq. (4)

is a more accurate estimation [55]. As illustrated in Fig. 6, the

ideal point za estimated by Eq. (4) is often closer to the true

ideal point than the ideal point zb estimated by Eq. (5).

B. Other Ideal Point Estimation Methods

Estimated ideal points by the methods in Eq. (4) and Eq. (5)

are usually far away from the true ideal point at the beginning

of the search. Several other ideal point estimation methods

have been proposed to reduce the negative effects caused by

such inaccurate estimation.

Fan et al. [56] proposed an improved ideal point setting

method for MOEA/D. A temporary ideal point za is first

obtained by Eq. (5). Then, the ideal point zlb (i.e., zc in

Fig. 6) is determined by taking the symmetric point of za (i.e.,

zc = −za). In the early stage of the evolutionary process, the

estimated ideal point zc is much better than the temporary

ideal point za. As za approaches the origin of the coordinate,

the estimated ideal point zc also approaches the origin. Note

that this method implicitly assumes that the true ideal point

z∗ is the same as the origin of the objective space. When the

true ideal point z∗ is different from the origin, the estimated
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ideal point zc cannot converge to z∗ even when the true Pareto

front is found.

Ishibuchi et al. [57] proposed a new idea of ideal point

estimation for MOEA/D. A temporary ideal point za is first

obtained by Eq. (5). Then, the ideal point zlb (i.e., zd in Fig. 6)

is determined by the temporary ideal point za subtracted by a

parameter α (i.e., zd = za−α). In [57], the value of α linearly

decreases with the evolutionary process. That is, the estimated

ideal point zd is much better than the temporary ideal point

za at the early evolutionary stage and it gradually approaches

to za during the evolutionary process. Experimental results

in [57] show that MOEA/D-PBI with the new estimated ideal

point zd performs much better than the original MOEA/D-PBI

on multiobjective knapsack problems.

Wang et al. [58] systematically investigated the effect of the

value α on the behavior of MOEA/D. In [58], three ideal point

estimation strategies are examined: pessimistic specification

(i.e., a small α), optimistic specification (i.e., a large α), and

dynamic specification (i.e., the value of α varies from a large

value to a small value as in [57]). Experimental results in [58]

show that the pessimistic specification strategy emphasizes the

exploitation of existing regions (i.e., convergence), while the

optimistic specification strategy emphasizes the exploration of

new regions (i.e., diversity). MOEA/D with either strategy only

performs well on certain problems. The dynamic specification

strategy can balance exploitation and exploration and helps

MOEA/D perform well on various types of problems.

C. Discussions and Summary

In summary, the survey of studies on ideal point estimation

reveals the following.

- In general, the ideal point estimated by Eq. (4) is closer

to the true ideal point than that estimated by Eq. (5).

- It is worth investigating whether the estimated ideal

point is very close to the true ideal point in some objec-

tives but not close in other objectives (i.e., whether there

exists a large difference in optimizing each objective).

The reason is that such an ideal point leads to a heavily

biased estimation of the range of the Pareto front even

when the nadir point is accurately estimated.

- The ideal point estimated by either Eq. (4) or Eq. (5)

is usually far away from the true ideal point at early

generations. The use of a better point as in [56]–

[58] than the estimated point may help to improve the

estimation accuracy and the performance of MOEAs.

IV. NADIR POINT ESTIMATION

Nadir point estimation is one of the three main parts of a

normalization method. Inaccurate estimation of the nadir point

can cause performance deterioration of MOEAs. Since the

nadir point estimation needs the information about the entire

Pareto front (i.e., the entire Pareto optimal solution set of the

given multi-objective optimization problem), the nadir point

estimation task is usually much more difficult than estimating

the ideal point [16], [59].

Given a solution set S, the nadir point can be estimated as

follows,

zub
i = max

x∈S
fi(x), i ∈ {1, 2, . . . ,m}. (6)

When the solution set S is the same as the Pareto optimal

solution set, the true nadir point is obtained by Eq. (6).

Since the Pareto optimal solution set is unknown, different

methods have been used to specify the solution set S in the

literature [12], [36], [60]. Straightforward estimation methods

use Eq. (6) to estimate the nadir point.

In addition, several efforts have been made to improve the

quality of the nadir point estimation. As illustrated in Fig. 7,

the solution set S in Eq. (6) can be preprocessed, and the

processed solution set S′ (instead of the original solution set S)

is used for nadir point estimation. After nadir point estimation,

the estimated nadir point can also be updated when additional

information is available.

According to the additional information used to preprocess

the solution set or update the estimated nadir point, we

categorize these sophisticated nadir point estimation methods

into four classes: extreme point-based methods, DRS-aware

methods, convergence-aware methods, and constraint-aware

methods. In this section, both straightforward and sophisti-

cated nadir point estimation methods are reviewed in detail.

A. Straightforward Nadir Point Estimation Methods

The straightforward nadir point estimation methods directly

estimate the nadir point from the solution set S using Eq. (6)

[29], [55]. These methods have been used in several state-

of-the-art MOEAs, such as Two Arch2 [61] and VaEA [62].

Due to its simplicity, the normalization using these nadir point

estimation methods is also called simple normalization or

naı̈ve normalization [25], [63]. In this subsection, the studies

on the specification of the solution set S in Eq. (6) are

surveyed.

The use of the merged population (i.e., the union of the

current and offspring populations) is a frequently-used method

to specify the solution set S in Eq. (6) [27], [29], [58],

[62], [64]–[75], which emphasizes the population’s distribution

[22]. The nadir point estimation using this set as the solution

set requires O(mN) computations, where m and N are the

number of objectives and the population size, respectively.

Only nondominated solutions in the merged population

[29], [34], [51], [76], [77] or the best fronts (based on the

nondominated sorting) containing at least N solutions from

the merged population [21], [22], [25], [26], [78], [79] are

also popularly used as the solution set S to give priority to

individuals with good convergence [22]. Note that to obtain

these solution sets, nondominated sorting is performed on the

merged population, which requires O(mN2) computations.

To reduce the computational cost when the set of nondomi-

nated solutions in the merged population is used as the solution

set, Cai et al. proposed [51] to preserve only a subset S′ of

solutions in the merged population that are close to the corner

solutions. Then, the nadir point is estimated from the nondomi-

nated solutions in the subset S′. The computational complexity
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A solution 

set 𝑆
improve Processed 

solution 

set 𝑆′

Estimated 

nadir point

Eq. (6) Improved 

nadir point

improve

Solution set 𝑆:

• Merged population

• Nondominated solutions in merged population

• Best fronts (based on nondominated sorting) 

containing at least 𝑁 solutions from merged 

population

• All nondominated solutions found so far

• All solutions found so far

Information used to improve solution set/nadir point:

• Extreme points (Section IV. B)

• DRSs (Section IV. C)

• Convergence information (Section IV. D)

• Constraint information (Section IV. E)

Eq. (6)

A solution 

set 𝑆 Estimated 

nadir point

(a) Straightforward nadir point estimation (Section IV. A)

(b) Sophisticated nadir point estimation (Section IV. B-E)

Fig. 7. Flowcharts of nadir point estimation. The straightforward nadir point estimation methods directly estimate the nadir point from a solution set S. The
sophisticated nadir point estimation methods either attempt to improve the quality of the solution set, or update the estimated nadir point, making use of
extreme points, DRSs, convergence information, or constraint information.

for estimating the nadir point is reduced to O
(
mL2

)
, where

L is the size of S′.

There exist some other specification methods of the solution

set S in Eq. (6). For example, all nondominated solutions

found so far (which are stored in an archive) [28], [80] and

all solutions found so far [38] are used as the solution set S.

Considering different straightforward ways of estimating the

ideal and nadir points, there can be different combinations of

ideal and nadir point estimation, as illustrated in Fig. 6. In

[36], He et al. examined the effects of normalization using

four different combinations of ideal and nadir points on the

performance of MOEA/D. Two frequently-used methods (i.e.,

the merged population and the nondominated solutions in the

merged population) are considered for nadir point estimation.

Experimental results show that different combinations have

different effects on the performance of MOEA/D. Each com-

bination shows significant performance deterioration for some

problems in DTLZ and WFG. This study suggests that a robust

normalization method is needed.

B. Extreme Point-based Nadir Point Estimation Methods

Extreme point-based nadir point estimation methods include

extreme point identification and are often followed by hyper-

plane construction.

To be more specific, as shown in Fig. 8, given a solution

set S, m extreme points {e1, e2, . . . , em} are identified first.

Then, the nadir point zub can be directly estimated from the

m extreme points [81]–[83]. Alternatively, a hyperplane can

be constructed using the m extreme points and zub can be

derived from the intercept of the hyperplane with each axis of

the translated objective space [21], [26], [84]. When each of

the m extreme points is the global optimal solution for each

𝑆 𝑆′

A solution 

set 𝑆 Extreme 

points

1) Extreme Point 

Identification 

(Table I)

Intercepts

2) Hyperplane 

Construction 

(optional)

Estimated 

nadir point

Eq. (6)

Eq. (6)

Fig. 8. Overview of extreme point-based nadir point estimation. The extreme
points identified by methods in Table I can be directly used as the processed
solution set S′ to estimate the nadir point. Alternatively, the extreme points
can be used for hyperplane construction and the nadir point is estimated from
the intercepts of the hyperplane with the axes of the translated objective space.

objective, the hyperplane is also called the convex hull of the

individual minima (CHIM) [85], [86].

Usually, when the extreme point-based nadir point estima-

tion methods are used, the ideal point is estimated from the

best values found so far (i.e., Eq. (4) in Section III) [24], [30],

[83], [87], [88]. However, there are different ways of identi-

fying the extreme points. In this subsection, studies related

to extreme point identification and hyperplane construction

are surveyed. MOEAs designed with the extreme-point-first

principle are also surveyed.

1) Extreme Point Identification Methods: Various extreme

point identification methods have been proposed in the liter-

ature. We summarize the extreme point identification meth-

ods in Table I. These methods can be classified into three

categories based on extreme point definitions: solutions with

the minimum objective values, solutions closest to the axis

vectors, and corner solutions.
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TABLE I
SUMMARY OF EXTREME POINT IDENTIFICATION METHODS. EXTREME POINT IDENTIFICATION FUNCTIONS FOR IDENTIFYING THE EXTREME POINT ei

CORRESPONDING TO THE i-TH OBJECTIVE fi ARE SUMMARIZED. FOR A GIVEN VECTOR f ∈ R
m IN THE OBJECTIVE SPACE, WE DEFINE

f ī := (f1, . . . , fi−1, fi+1, . . . , fm)T ∈ R
m−1 , WHICH HAS THE i-TH ELEMENT REMOVED (DEFINITION 1 IN THE SUPPLEMENTARY DOCUMENT).

Category Identification function Description Reference

Solutions
with the

minimum
objective

values

ei = argmin
x∈S

fi (x) (7)
The solution that has the minimum objective
function value for the i-th objective fi is iden-
tified as the extreme point for fi.

[14]

–

One extreme point is first identified by Eq. (7).
Then, the remaining m− 1 extreme points are
identified one by one by selecting the solution
that is farthest from the identified solutions.

DSS [89]

Solutions
closest to
the axis
vectors

ei = argmin
x∈S

ASF1(x, si) (8)

The solution closest to each axis vector is
identified as an extreme point. The closeness
is measured by the achievement scalarizing
function (approximated Chebyshev distance).

NSGA-III [21]

ei = argmin
x∈S

∥

∥

∥
(f(x)− z

lb)ī
∥

∥

∥

1

(9)
The only difference from NSGA-III [21] is that
the closeness is measured by the Manhattan
distance (L1 norm).

1by1EA [33]

ei = argmin
x∈S

∥

∥

∥
(f(x)− z

lb)ī
∥

∥

∥

2

(10)
The only difference from NSGA-III [21] is that
the closeness is measured by the Euclidean
distance (L2 norm).

AGE-MOEA [90]

ei = argmin
x∈S

∥

∥

∥
(f(x)− z

lb)ī
∥

∥

∥

∞
(11)

The only difference from NSGA-III [21] is
that the closeness is measured by the exact
Chebyshev distance (L∞ norm).

PaRP/EA [91]

ei = argmin
x∈S

⋃
{e1,e2,...,em}

ASF1(x, si) (12)

The only difference from NSGA-III [21] is that
the extreme points identified at the previous
generation are involved in the solution set such
that the extreme points are updated instead of
being straightforwardly replaced.

[55]

ei = argmin
x∈S

ASF2(x, si) (13)

The only difference from NSGA-III [21] is
that the achievement scalarizing function is
calculated in the normalized objective space.
The objective space is normalized using the
ideal and nadir points estimated at the previous
generation.

θ-DEA [26]

ei =argmin
x∈S

∥

∥

∥
(f(x)− z

lb)ī
∥

∥

∥

2

+λ|fi(x)− z
lb
i |,whereλ = 0.01

(14)
A penalty term is introduced to prevent fi(x)
from becoming too large.

MaOEA/IGD [92]

ei = argmin
x∈S

arccos
(

(f(x)− z
lb)sTi

)

(15)

The solution closest to each axis vector is
identified as an extreme point. The closeness
is measured by the angle of each axis vector
and the vector starting from the estimated ideal
point to the solution.

MaOEA-IT [93]

ei = argmax
x∈S

∥

∥

∥
(zub − f(x))ī

∥

∥

∥

2

(16)

The solution with the largest perpendicular
distance from the line specified by zi = zub

i

for i = 2, 3, . . . ,m (i.e., dub in Fig. 10), where
z

ub = (zub
1 , zub

2 , . . . , zub
m) is the estimated nadir

point by a straightforward method, is identified
as an extreme point. The closeness is measured
by the Euclidean distance (L2 norm).

1by1EA [33]

Corner
solutions

–
A hybrid method of the solutions with the
minimum objectives and the solutions closest
to the axis vectors.

I-DBEA [87]
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Fig. 9. Illustration of the identified extreme points by approaches in [14] and [89] on an inverted triangular Pareto front (a), by the approach in [14] on
a regular triangular Pareto front (b), by the approach in [89] on a regular triangular Pareto front (c), and by the approach modified from [89] on a regular
triangular Pareto front (d).

𝑓2

𝑓1

𝐳ub

𝑑𝑙𝑏
𝑑𝑢𝑏

𝜃𝐬1
𝐬2
0(𝐳lb) A

B

Fig. 10. Illustration of extreme point identification methods based on axis
vectors.

a) Minimum objective value-based methods: Tanabe et

al. [14] defined the extreme points as solutions that have the

minimum objective value for each objective (i.e., Eq. (7) in

Table I). Extreme points can be correctly identified when the

shape of the Pareto front is inverted triangular, as illustrated in

Fig. 9 (a). However, it was reported in [89] that this approach

may capture none of the extreme points when the optimization

problem has a regular triangular Pareto front since all solutions

on a Pareto front boundary minimize the same objective. As

illustrated in Fig. 9 (b), the identified three extreme points are

different from the true extreme points.

Singh et al. [89] proposed to start with only a single extreme

point for an arbitrary objective instead of trying to find all

the m extreme points at the same time. To be more specific,

one extreme point e1 for an arbitrary objective is found in

the same manner as in [14] and added to the solution set S.

Then, starting from the extreme point e1, the solution with the

farthest distance from the solution set S is selected one by one.

This approach ensures the identification of the m− 1 extreme

solutions (i.e., e2, e3, . . . , em), as illustrated in Fig. 9 (c).

b) Axis vector-based methods: The axis vector-based

extreme point identification methods identify the extreme

point based on axis vectors. The definition of axis vectors

is shown in Definition 4. For example, for a three-objective

optimization problem, the three axis vectors are s1 = (1, 0, 0),
s2 = (0, 1, 0), and s3 = (0, 0, 1).

Definition 4. For an m-objective optimization problem, there

are m axis vectors {s1, s2, . . . , sm}. An axis vector si is a

weight vector with the axis direction corresponding to the

objective fi. All elements of the axis vector si are zeros except

for the i-th element with one.

We use Fig. 10 to summarize the general idea of different

axis vector-based methods. The corresponding extreme point

identification functions of these methods can be found in

Eqs. (8)-(16) in Table I. As illustrated in Fig. 10, all solutions

are first translated to the translated objective space so that the

estimated ideal point of the translated population becomes a

zero vector. For the axis vector s1, the solution closest to s1 is

identified as the extreme point e1. The closeness of a solution

to s1 can be measured in various manners such as

- the perpendicular distance of the solution from s1 (i.e.,

dlb in Fig. 10 and Eqs. (8)-(14) in Table I),

- the angle between the axis vector s1 and the vector

starting from the estimated ideal point zlb to the solution

(i.e., θ in Fig. 10 and Eq. (15) in Table I), and

- the perpendicular distance of the solution from the line

specified by zi = zub
i for i = 2, 3, . . . ,m (i.e., dub

in Fig. 10 and Eq. (16) in Table I) where zub =
(zub

1
, zub

2
, . . . , zub

m) is the estimated nadir point by a

straightforward method.

While the first and second distances are to be minimized,

the third distance is maximized. Various approaches based

on these three distances have been proposed in the literature,

which are explained later.

In NSGA-III [21], Deb and Jain proposed to minimize the

following achievement scalarizing function (ASF) for finding

an extreme point for each objective,

ASF1(x, si) =
m

max
j=1

f ′

j(x)/si,j , i ∈ {1, 2, . . . ,m}, (17)

where f ′

i is the i-th objective translated by Eq. (2) such that

the estimated ideal point becomes the origin of the coordinate

system. Notice that zeros in the axis vector si are replaced

with a small number 10−6. For the axis vector si, the solution

x ∈ S minimizing the ASF function in Eq. (17) is identified

as the extreme point ei for the objective fi (i.e., Eq. (8) in

Table I). This method has also been used in DBEA-Eps [94],

DBEA [95], DoD [73], LEAF [78], and DECAL [24].

The geometric property of Eq. (17) is as follows. For proof

of Theorem 1, refer to the supplementary document.

Theorem 1. Let si = (si,1, si,2, . . . , si,i, . . . , si,m) =
(10−6, 10−6, . . . , 1, . . . , 10−6) be the axis vector correspond-

ing to the i-th objective fi. The ASF function in Eq. (8) is

the approximation of the infinity norm (also called Chebyshev

distance) between the solution x and the axis vector si.

That is, the distance dlb in Fig. 10 is calculated by the

approximated L∞ norm in NSGA-III [21]. The distance dlb
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Fig. 11. Illustration of the identified extreme points by approaches in NSGA-III [21] on (a) a regular triangular Pareto front, (b) an inverted triangular Pareto
front, (c) the Pareto front of the kite test problem [8], and (d) the degenerated Pareto front of DTLZ5 [11]. The gray points denote the Pareto optimal solutions,
where the identified extreme points are highlighted in red. The red plane denotes the hyperplane constructed using the identified extreme points. No unique
hyperplane can be constructed in (d) due to duplicate extreme points.

in Fig. 10 has also been calculated by other distance metrics in

the literature. For example, these metrics include the L1 norm

in 1by1EA [33], L2 norm in AGE-MOEA [90], and exact

L∞ norm in PaRP/EA [91] (i.e., Eq. (9)-(11) in Table I). As

pointed out by Xiang et al. [91], when the exact L∞ norm is

used, DRSs are likely to be identified as the extreme points

(which will be explained in Section IV-C).

Blank et al. [55] improved the method in NSGA-III [21]

by including the extreme points identified at the previous

generation in the solution set S to avoid an abrupt change

in the nadir point (see Eq. (12) in Table I).

Yuan et al. [26] proposed to calculate the distance dlb in

Fig. 10 in the normalized objective space. A slightly different

ASF function was proposed in θ-DEA [26] as follows,

ASF2 (x, si) =
m

max
j=1

{∣∣∣∣∣
fj(x)− zlb

j

zubj − zlb
j

∣∣∣∣∣ /si,j

}
. (18)

The extreme points are identified by minimizing the ASF2

function (see Eq. (13) in Table I). Similar to NSGA-III [21],

this method is actually identifying the closest solution toward

each objective axis by considering the approximated L∞ norm.

The only difference from the ASF function (17) in NSGA-III

[21] is that the approximated L∞ norm is calculated in the

normalized objective space. The objective space is normalized

using the estimated ideal and nadir points at the previous

generation. This might help to more accurately identify the

extreme points because the Lp norm is a scaling-dependent

distance metric. However, if the estimated ideal and nadir

points from the previous generation are not accurate, this

method may deteriorate the identification process. This method

has also been used by MOEA/D-DU [25], EFR-RR [25],

MOEA/D-AU [96], ASEA [30], and MaOEA/SRV [22].

To identify the extreme point ei for the i-th objective,

Eqs. (8)-(13) calculate the perpendicular distances (i.e., dlb
in Fig. 10) of solutions from the axis vector si in different

manners. Sun et al. [92] pointed out that the i-th objective

value was neglected in such calculations when identifying the

extreme point ei. As illustrated in Fig. 10, if point B is a

DRS that is much worse than point A in terms of the first

objective, it will be identified as an extreme point because it

is slightly closer to s1 than point A. Sun et al. [92] highlighted

this limitation and proposed to introduce a penalty term on the

i-th objective value to prevent it from becoming too large (see

Eq. (14)). This method has also been used in B-NSGA-III

[97].

Sun et al. [93] proposed to minimize the angle θ between

the axis vector and the vector starting from the estimated ideal

point zlb (the origin of the translated objective space) to the

solution in MaOEA-IT [93], as illustrated in Fig. 10. The

solution with the minimum angle toward each axis vector is

identified as an extreme point (i.e., Eq. (15) in Table I). This

method has also been used in MaOEA/RVs [22].

Liu et al. [33] proposed to maximize the perpendicular

distance of the solution from the line specified by zi = zub
i

for i = 2, 3, . . . ,m (i.e., dub in Fig. 10) where zub =
(zub

1
, zub

2
, . . . , zub

m) is the estimated nadir point by a straightfor-

ward method. That is, the distance dub as illustrated in Fig. 10.

The solution with the maximum distance dub is identified as

an extreme point (i.e., Eq. (16) in Table I).

These methods have a common issue. The extreme point

identification methods searching for solutions closest to the

axis vectors may fail to identify the corners that give the

correct nadir point [8]. Only when the Pareto front is regular

triangular can the extreme points be correctly identified by

these methods. As shown in Fig. 11, with the method in

NSGA-III [21], the three corners of the triangular Pareto front

are correctly found, whereas the extreme points of irregular

Pareto fronts (e.g., the inverted triangular Pareto front, the

Pareto front of the kite test problem [8], and the degenerated

Pareto front of DTLZ5 [11]) cannot be correctly identified.

c) Corner solution methods: The Pareto corner (or the

corner solution) was first defined in [98]. In I-DBEA [87],

a corner sort ranking method was proposed by hybridizing

the abovementioned two approaches: (a) solutions with the

minimum objective values and (b) solutions close to the

axis vectors. First, 2m solutions are identified, and then,

m solutions are selected as the corner solutions. The first

m solutions are m solutions with the minimum value of

each objective (i.e., solutions that minimize one of the m
objectives). The other m solutions are m solutions with the

minimum distance from each objective axis considering the

L2 norm (e.g., the solution that minimizes f2
2 + f2

3 + ...+ f2
m

for the f1 axis s1). After those 2m solutions are identified, m
corner solutions are selected. In [87] and [99], the point with

the maximum objective value is selected for each objective. In
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the source code of [87], nondominated solutions are selected

first, and then, the point with the maximum objective value is

selected for each objective from the nondominated solutions.

The motivation of the hybrid approach is to utilize the two

features:

- the minimum value-based approaches (in (a)) are useful

for inverted triangular Pareto fronts as shown in Fig. 9

(a), and

- the axis vector-based approaches (in (b)) are useful for

triangular Pareto fronts (as shown in Fig. 11 (a)).

2) Hyperplane Construction: We have surveyed various

extreme point identification methods. When extreme points

are identified, the nadir point zub can be directly estimated

from the identified m extreme points {e1, e2, . . . , em}. In this

case, however, the estimated nadir point is not correct when

the extreme points are not correctly identified. For example,

in Fig. 9 (b), the nadir point directly estimated from the

three identified extreme points is completely different from

the true nadir point. Alternatively, an m-dimensional linear

hyperplane passing through these m points can be constructed

and the nadir point zub can be derived from the intercept of

the hyperplane with each axis, as illustrated in Fig. 8.

The equation of the plane is obtained by calculating its

m intercepts with the axes of the objective space from the

following linear system [26], [88]:

(a)◦−1 = E−1u, (19)

where the matrix E = (f(e1)− zlb, f(e2)− zlb, . . . , f(em)−
zlb)T, a = (a1, a2, . . . , am)T is a vector that consists of

the intercepts of the hyperplane with all translated objective

axes (i.e., ai is the intercept of the hyperplane with the i-
th axis of the translated objective space), u = (1, 1, . . . , 1)T,

and (a)◦−1 = ((a1)
−1, (a2)

−1, . . . , (am)−1)T . The intercepts

can be obtained by solving the linear system (19). Thus, the

intercepts can be viewed as showing the estimated range of the

Pareto front. The estimated nadir point in the original objective

space can be computed by zub = a+ zlb.

The overall process requires O(m3) computations, which

results from the matrix inversion of size m × m. Given its

computational cost, hyperplane construction is expected to

improve the quality of the estimated nadir point. For example,

as shown in Fig. 9 (b), the hyperplane passing through the

three identified extreme points is the same as the hyperplane

with the true extreme points (i.e., the true linear Pareto front).

In this case, the estimated nadir point is the same as the true

nadir point, although none of the extreme points are correctly

identified.

The hyperplane construction was analyzed on an implemen-

tation level in [55]. Blank et al. [55] pointed out two practical

issues about the hyperplane construction: construction failure

and abnormal intercepts. These issues were also reported in

[25], [26]. The m extreme points may fail to construct an

m-dimensional hyperplane. When linear-dependent extreme

points are identified (e.g., in the degenerate case where du-

plicate extreme points are identified), the rank of the matrix

E is less than m, resulting in a linear system with infinitely

many solutions [25], [26]. On some problems, especially those

with degenerate Pareto fronts, searching along different axis

directions is very likely to produce duplicate extreme solutions

[29], [55], as shown in Fig. 11 (d). Even when the hyperplane

is constructed, the computed intercepts can be infinite [26] or

negative [25], [26], [55] in some axis directions, leading to

abnormal normalization results.

In the original NSGA-III paper [21], the handling of these

issues was not mentioned. To address these issues, Yuan et al.

[25] adopted the following strategy: znad
i is specified by the

largest value of fi in the nondominated solutions of St for

each i ∈ {1, 2, . . . ,m}.

Blank et al. [55] revised the algorithm by specifying the

upper and lower bounds of the estimated nadir point zub.

The upper bound of zub is defined by the worst point zw

having the worst value observed for each objective so far,

while the lower bound of zub is defined by a slightly worse

point than the estimated ideal point zlb. For each objective,

when the intercept is very small or the estimated nadir point

is larger than the worst point zw, the hyperplane is not useful

[55]. Once the hyperplane construction fails, the nadir point is

estimated by a straightforward method. Experimental results

in [55] show that the estimated nadir point by the hyperplane

construction is much better than that by the extreme points on

the DTLZ [11] and scaled DTLZ [12] problems.

To investigate the effectiveness of hyperplane construction,

we show the constructed hyperplanes for different Pareto

fronts using the extreme points identified by approaches from

NSGA-III [21] in Fig. 11. Our observations are as follows.

- Triangular linear Pareto front. If the three extreme points

are included in the solution set, they are found as the

extreme points. Then, the hyperplane constructed by

those three points is the same as the linear Pareto front,

as shown in Fig. 11 (a). The estimated ideal and nadir

points are the same as the true ideal and nadir points,

respectively.

- Inverted triangular Pareto front. Even when the three

extreme points are included in the solution set, they are

not selected by the ASF function (17). Three solutions

(each of which is around the middle of each side of

the Pareto front) are found, as shown in Fig. 11 (b). If

those three points are on the Pareto front, the identified

plane is the same as the Pareto front (exactly speaking,

the Pareto front is on the identified plane and the Pareto

front is a subset of the identified plane). However, the

nadir point estimated by the intercepts is much larger

(worse) than the true nadir point.

- Pareto front of the kite test problem [8]. Only one corner

can be correctly identified as shown in Fig. 11 (c).

Although the hyperplane can be constructed, the nadir

point estimated by the intercepts is different from the

true nadir point because the Pareto front of the kite

problem is not linear.

- Degenerated Pareto front of the DTLZ5 [11]. Only one

corner can be correctly identified as shown in Fig. 11 (d).

The plane cannot be uniquely identified due to duplicate

extreme points.

The identified plane is the same as the Pareto front when

the following conditions are satisfied: (a) the Pareto front is
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Fig. 12. Illustration of nadir point translation in [101].

linear, (b) all the obtained m points are on the Pareto front, and

(c) all the obtained m points are linearly independent. When

the condition (c) is not satisfied, inappropriate results can be

obtained (i.e., a hyperplane cannot be uniquely determined).

3) Extreme-Point-First Principle: In the EMO field, the

extreme points are usually selected first in order to obtain

information about the boundary of the Pareto front [22], [100].

Some MOEAs are designed based on the extreme-point-first

principle. For example, in MaOEA/D-2ADV [69], at early

generations, search is only conducted along the objective axes

in order to fast search for the extreme solutions. In B-NSGA-

III [97], after the search for the extreme points converges,

the search for other solutions starts. In VaEA [62], accurate

boundary values are found for each objective, which may be

attributed to the survival of extreme solutions in environmental

selection.

C. Dominance Resistant Solution-Aware Nadir Point Estima-

tion Methods

The presence of DRSs in the solution set can seriously

inflate the estimated nadir point in certain objective directions.

Some careful treatments are needed to avoid or weaken this

phenomenon during the nadir point estimation. The methods

considering the existence of DRSs are called DRS-aware nadir

point estimation methods in this paper.

Asafuddoula et al. proposed a nadir point translation method

in g-DBEA [101]. At each generation, the nadir point is

estimated by a straightforward estimation method discussed in

IV-A with nondominated solutions in the current population as

the solution set. The estimated nadir point can be translated

by taking the minimum value of the nadir points from the

previous and current generations. As illustrated in Fig. 12,

points A and B are the nadir points estimated from nondom-

inated solutions in the previous (blue points) and current (red

points) generation, respectively. If the solution a is a DRS

solution, it is translated parallel to the f2-axis such that its f2
value is equal to the closest point in the previous generation.

Correspondingly, the nadir point is translated from B to C.

Nadir point translation is performed regularly (e.g., every 10

generations when the total number of generations is 100)

[101].

Six sigma strategies are commonly used in statistical quality

control [102] and robustness analysis [103]. Bhattacharjee et

al. [49] proposed a six sigma-based DRS removal scheme

to minimize the influence of DRSs. Nondominated solutions

along each axial direction are categorized as DRSs if they

have an objective value more than the mean plus six times

its standard deviation. These DRSs will be removed from

the solution set. The remaining solution set is then used to

compute the amended nadir point which in turn is used for

normalization.

Xiang et al. [91] proposed a hypercube-based method in

PaRP/EA [91] to deal with DRSs. The hypercube is defined

by the estimated ideal and nadir points. The nadir point is

estimated by the nadir point estimation method in NSGA-III

[21]. That is, the ASF function (17) is used to identify the

extreme points. Solutions outside the hypercube are regarded

as DRSs and are removed in environmental selection.

D. Convergence-aware Nadir Point Estimation Methods

When some solutions in the current population are far away

from the Pareto front, the estimated nadir point by a straight-

forward method from the current population is not accurate.

The location of the estimated nadir point can be strongly

biased. This is why some studies have proposed methods to

use convergence information in nadir point estimation. Such

methods are called convergence-aware nadir point estimation

methods in this paper.

Hernández Gómez and Coello Coello [104] proposed a nadir

point update mechanism by monitoring convergence of the

population in MOMBI-II [104]. At each generation, a tempo-

rary nadir point ztemp is estimated by taking the maximum

value of each objective in the current population. A pivot

nadir point zub is initialized by ztemp at the first generation

and updated by ztemp at each generation. The temporary nadir

points of the previous five generations are recorded, and the

variance of the five points for each objective is used as a

metric to evaluate the proximity of the current population to

the true Pareto front. Based on the proximity, the nadir point

is updated in different ways. The update of the nadir point

requires O(mN) computations. This method is also used in

iMOACOR [105].

Qi et al. [106] proposed an adaptive nadir point setting

strategy for MOEA/D-IPBI [107]. The nadir point is first

estimated by the worst value of each objective in the current

population. When the estimated ideal point remains unchanged

for G generations, the nadir point is set to the upper bound of

the extreme points. Note that an extreme point can be defined

in different manners, as shown in Table I. In [106], an extreme

point is defined as a solution with the best function value for

one objective function in the current population. The parameter

G is set as 90 in [106]. This strategy can reduce the negative

effects of dominated solutions in nadir point estimation [107].

Blank et al. [55] proposed to consider multiple nondomi-

nated fronts adaptively as the solution set. Degenerate cases

may occur when the set of nondominated solutions in the

current population are selected for nadir point estimation.

The estimated nadir point by this method might be the same

as the estimated ideal point if the population has only one

nondominated solution. To avoid the division by zero problem,

better fronts by the nondominated sorting are included in the

solution set S one by one until the range zub
i − zlb

i for each

objective is larger than a prespecified threshold.
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Saxena and Kapoor [108] proposed to intermittently update

the nadir point. A stability tracking procedure based upon

weight vectors was proposed for decomposition-based MOEAs

to check if the population is stabilized. This procedure has

been incorporated into NSGA-III [21]. At every generation,

this procedure is performed and the nadir point is only

updated when the stability tracking procedure indicates that

the population is stabilized. This method has also been used

in HFiDEA [109].

E. Constraint-aware Nadir Point Estimation Methods

When dealing with constrained MOPs, the feasibility of

solutions has a large impact on nadir point estimation. How-

ever, constraints are usually ignored in estimating the nadir

point. The methods taking into consideration the constraint

information are called constraint-aware nadir point estimation

methods in this paper.

Fukumoto and Oyama [60] proposed a constraint-aware esti-

mation method for the ideal and nadir points. All solutions are

sorted into different fronts as follows. Feasible solutions are

ranked by the nondominated sorting and infeasible solutions

are ranked by constraint violation values. The fronts of feasible

solutions are ranked before (i.e., better than) the fronts of

infeasible solutions. Then these fronts are added to the solution

set S one by one to estimate the ideal and nadir points until

the number of solutions inside the hyperrectangle bounded

by the two points is larger than 5% of the population size.

This stopping criterion guarantees that the number of solutions

in the solution set S is not too small and the ideal-nadir

hyperrectangle is near the most feasible region even when

there are only infeasible solutions. Experimental results show

that the proposed estimation method improves the performance

of MOEA/D-M2M [110] in solving a real-world constrained

MOP (i.e., the Mazda CdMOBP problem [111]).

F. Discussions and Summary

In summary, the survey of studies on nadir point estimation

reveals the following.

- The extreme point identification in [14] is based on the

assumption that the Pareto front is inverted triangular,

which may fail to identify any corner solutions when

the Pareto front is regular triangular, as explained in

Fig. 9 (b). Extreme point identification methods using

the axis vectors are based on the assumption that the

Pareto front is regular triangular. However, as discussed

in [45], [112], this shape is not realistic. It is advisable

to consider both shapes as in I-DBEA [87].

- In DSS [89], starting from the extreme point e1 iden-

tified by Eq. (7), the most distant solutions from the

identified solutions are selected one by one. This method

guarantees that at least m − 1 extreme points can be

correctly identified, as explained in Fig. 9 (c). This ap-

proach can be modified by discarding the first identified

extreme point and finding another solution farthest from

the other identified solutions. As shown in Fig. 9 (a)

and (d), all of the three extreme points can be correctly

identified by the modified approach on the regular and

inverted triangular Pareto fronts.

- There exist different definitions of the closeness of a

solution to each axis vector in axis vector-based extreme

point identification methods. It is worth comparing them

and examining the effects of different definitions.

- MOEAs based on the extreme-point-first principle may

help nadir point estimation.

- Hyperplane construction in the extreme point-based

nadir point estimation methods is computationally ex-

pensive, particularly for many-objective problems [21],

[29].

- Hyperplane construction has two issues (i.e., construc-

tion failure and abnormal intercepts) that should be

carefully handled as in [25], [26], [55].

- The effectiveness of hyperplane construction is depen-

dent on Pareto front shapes. While the estimated nadir

point is the same as the true nadir point on triangular

linear Pareto fronts, it is often much worse than the

true nadir point on inverted triangular Pareto fronts and

different from the true nadir point on nonlinear Pareto

fronts (e.g., the kite test problem [8]). The hyperplane

cannot be uniquely constructed for degenerated Pareto

fronts (e.g., DTLZ5 [11]).

- DRSs are often identified as extreme points, which

may severely deteriorate the performance of the extreme

point-based nadir point estimation methods. It is impor-

tant to take the existence of DRSs into consideration

when estimating the nadir point as used in DBEA-DS

[49], g-DBEA [101], and PaRP/EA [91].

- It is interesting to use convergence information, as

in [55], [106] and MOMBI-II [104], to improve the

quality of the estimated nadir point since the nadir point

estimated by a straightforward method is not accurate

when the current population is far away from the Pareto

front.

- Constraint information can be considered in nadir point

estimation when handling constrained MOPs as in [60].

V. NORMALIZATION WITH ESTIMATED PARETO FRONT

RANGE

Given a population P with N individuals, the objective

space normalization generates a set of normalized points

{f̃(x1), f̃(x2), . . . , f̃(xN )} in the m-dimensional objective

space. Note that, in this section, we assume that the estimated

ideal point zlb and the estimated nadir point zub have already

been obtained. Since the estimated ideal and nadir points can

be inaccurate, several modified normalization equations have

also been proposed to reduce the negative effect of inaccu-

rate estimation of the two points. In this section, a simple

straightforward normalization method and its modifications are

surveyed. Alternative attempts of normalization in MOEAs

using weight vectors or reference vectors are also surveyed

in this section. These methods are summarized in Table II of

the supplementary document due to the page limit.
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A. Straightforward Objective Space Normalization

The straightforward equation for objective space normaliza-

tion directly replaces the true ideal and nadir points in Eq. (3)

with the estimated ideal and nadir points as follows [21], [67],

[113]:

f̃i(x) =
f ′

i(x)

zub
i − zlbi

=
fi(x)− zlb

i

zub
i − zlb

i

, i ∈ {1, 2, . . . ,m}. (20)

Each individual in the population P is first translated such

that the estimated ideal point of the translated population

becomes a zero vector. After objective value translation, each

translated objective vector f ′

i(x) is scaled so that solutions

inside the hyperrectangle bounded by the estimated ideal and

nadir points are in the range of [0, 1] [113].

The objective space translation is important, especially for

decomposition-based MOEAs. This is because the objective

space translation makes sure that the weight vectors start from

the origin, which maximizes the coverage of the objective

space by the weight vectors [67]. In addition, the objective

space translation guarantees that all individuals are in the

first quadrant. That is, all the objective values are strictly

nonnegative. This is a necessary condition for some operations

(e.g., binary ǫ-indicator Iǫ [114] and density estimator [83]).

The significance of the objective value translation has been

empirically studied in [67]. It was reported in [67] that the

number of intersection points between the weight vectors

and the Pareto front in decomposition-based MOEAs was

increased by the objective value translation. Thus, the density

of the approximated Pareto optimal solutions was increased.

As pointed out in [12], the use of Eq. (20) has a zero division

issue, which can occur when the diversity of the population

is small. Several variants of the Eq. (20) are recommended

to avoid this issue, which are surveyed in the following

subsections.

B. Modified Objective Space Normalization

Different modifications of the normalization equations have

been proposed to reduce the possible negative effects of

inaccurate estimation of the ideal and nadir points. They can be

classified into four categories: use of small values in numerator

and denominator, use of conditions on the range of objective

values, use of conditions on constraints, and consideration of

the reliance on the estimated Pareto front range.

1) Small Values in The Numerator and The Denominator:

There exist different kinds of modifications for Eq. (20). The

most commonly-used modification is as follows:

f̃i(x) =
fi(x)− zlb

i + α

zub
i − zlb

i + β
, (21)

where α and β are user-defined parameters. The main advan-

tage of this modification is to prevent the equation from zero

division in the processes of computation [115], [116].

Usually, the setting of α = 0 and β = ǫ is adopted.

Ishibuchi et al. [12] investigated the effect of the value of

ǫ in MOEA/D. Different values of ǫ (i.e., 10−12, 10−6, 1)

are considered. Experimental results in [12] show that an

appropriate specification of ǫ is problem dependent. Recently,

Pang et al. [117] proposed a hyper-heuristic method to tune

the parameter ǫ (i.e., from 10−6 to 25) in an offline manner.

The auto-tuned MOEA/D has different values of ǫ for different

problems. Experimental results in [117] show that an appro-

priate specification of ǫ for each problem is able to remedy the

diversity deterioration caused by inaccurately estimated ideal

and nadir points.

In some papers [115], [116], the setting that α = β = ǫ is

used. In this case, it is interesting to note that Eq. (21) can be

reformatted as follows:

f̃i(x) =
fi(x)− (zlb

i − ǫ)

zub
i − (zlb

i − ǫ)
=

fi(x)− z∗∗i
zub
i − z∗∗i

, (22)

where z∗∗i is the i-th objective of the estimated utopian point5.

That is, the range of the Pareto front is bounded by the

estimated nadir point and the estimated utopian point [19]. It

is worth noting that the setting of α and β is highly related to

the ideal point estimation methods, which we have discussed

in Section III.

2) Conditions on The Range of Objective Values: Ishibuchi

et al. [12] reported that a very small range of objective

values is the main reason for the severe negative effects

of normalization on the performance of MOEA/D. Different

attempts were made in the literature to constrain the range of

objective values.

He et al. [53] proposed to fix the normalized objective

value based on the range of objective values. The value of

the normalized objective f̃i is fixed (i.e., changed) to a small

value when the estimated range of that objective is very small.

That is, f̃i(x) = 10−10 when zub
i − zlb

i < 10−10.

Liu et al. [33] fixed the estimated range of an objective to

1 in 1by1EA [33] when the estimated range of that objective

is very small. That is, zub
i − zlb

i = 1 when zub
i − zlb

i < 10−21.

Tian et al. [52] used the following strategy in NSGA-II-SDR

[52]: the normalization is performed only when the maximum

range is smaller than 20 times the minimum range. That is,

max
j=1,...,m

(zub
j − zlb

j ) < 20 × min
j=1,...,m

(zub
j − zlb

j ). Note that the

effect of this multiplicity parameter was not studied in [52].

3) Conditions on Constraints: Liu and Wang [118] ex-

perimentally showed that the normalization for constrained

MOPs may mislead the search process since some infeasible

solutions far away from the feasible region can have small

(i.e., good) objective function values. It was argued that it is

impractical to employ only the feasible solutions to normalize

the objective functions since all solutions in the population

may be infeasible in the early stage of evolution [60], [118].

Li et al. [119] proposed to control the timing of nor-

malization by considering the constraint information in C-

TAEA [119]. The objective space is normalized before density

estimation only when the number of feasible solutions is larger

than the population size N . That is, normalization is only

performed when there are enough feasible solutions.

5A utopian point z⋆⋆ =
(

z⋆⋆1 , z⋆⋆2 , . . . , z⋆⋆m
)T

is a vector that is strictly
better than the ideal point. In practice, a utopian point is specified by
subtracting a small positive value ǫ from the ideal point. Thus, we have
znadi − z⋆⋆i > 0 for all i = 1, . . . ,m.
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4) Consideration of Reliance on The Estimated Pareto

Front Range: At early generations, the population is far away

from the Pareto front and the estimated ideal and nadir points

(i.e., the estimated Pareto front range) are not accurate [12].

Although this has been well recognized in the literature, ob-

jective space normalization is still often performed completely

relying on the estimated range even at the beginning of the

evolutionary process. Several methods have been proposed to

reduce the negative effects of the inaccurately estimated Pareto

front range.

He et al. [120] proposed a dynamic normalization strategy

to control the reliance of normalization on the estimated

Pareto front range. The straightforward normalization equation

Eq. (20) is reformulated as follows:

f̃i(x) =
fi(x)− zlb

i

Li + ǫ
, i = 1, 2, . . . ,m, (23)

where Li = (zub
i − zlb

i )/((1− α)(zub
i − zlb

i − 1) + 1), and α
is a parameter with a value in the range of [0, 1] that controls

the reliance of normalization on the estimated Pareto front

range. When α = 0, we have Li = 1, which makes Eq. (23)

independent of the estimated nadir point. That is, only the

objective function translation occurs. When α = 1, we have

Li = zub
i − zlb

i (i.e., exactly the same as the straightforward

normalization equation, Eq. (20)). By controlling the value

of α from 0 to 1, the reliance of Eq. (23) on the estimated

Pareto front range increases. In [120], the value of α increases

from 0 to 1 linearly or based on a sigmoid function. Experi-

mental results show that the dynamic change in α makes the

normalization more robust than the case of α = 1 (i.e., the

straightforward normalization equation, Eq. (20)).

Unlike [120], Saxena and Kapoor [108] adopted a step

function to control the reliance on the estimated Pareto front

range. The objective function translation (i.e., the value of

α in Eq. (23) is 0 and the objective space does not rely on

the estimated nadir point) is performed at early generations

when the population is not stable. A stability tracking method

was proposed for NSGA-III to check if the population is

stable. Normalization (i.e., the value of α in Eq. (23) is 1) is

performed only when the population stabilizes. This method

has also been used in HFiDEA [109].

In [121], two populations in different objective spaces are

evolved collaboratively, one in the translated objective space

(i.e., the objective space does not rely on the estimated nadir

point) and another in the normalized objective space. The

nondominated solutions among all solutions in the merged

populations are used to estimate the ideal and nadir points.

The experimental results show that the use of the two ob-

jective spaces in normalization improves the performance of

MOEA/D in solving various MOPs.

C. Weight/Reference Vector Modification

For MOEAs with weight vectors or reference vectors,

instead of normalizing the solutions in the objective space,

the weight/reference vector scaling can be an alternative way

of normalization. Weight vector modification seems to have

almost the same effect as objective space normalization in

obtaining a uniformly distributed set of solutions, as explained

in Fig. 2 (b) and (c).

Cheng et al. [67] proposed a reference vector scaling

strategy in RVEA [67] based on the minimum and maximum

values of each objective. That is, the reference vectors are

scaled according to the range of solutions, instead of nor-

malizing the solutions in the objective space, as illustrated

in Fig. 2. This strategy is periodically performed (e.g., every

10 generations). The sensitivity analysis of the frequency of

this strategy shows that frequent use (e.g., every generation)

of this strategy leads to a significant performance deterioration

of RVEA on DTLZ3. This is also pointed out by Giagkiozis

et al. [122].

Tian et al. [72] adopted this strategy in AR-MOEA [72]. Un-

like RVEA [67], the scaled weight vectors are not normalized,

but they are generated in the region of
∏m

i=1

[
0, zub

i − zlb
i

]
.

Habib et al. [74] adopted this strategy in HSMEA [74]. Unlike

RVEA [67], the weight vector modification in AR-MOEA [72]

and HSMEA [74] is performed at every generation.

Li et al. [84] investigated the weight vector modification in

MOEA/D-PBI [20] on the three-objective SDTLZ problems.

The original MOEA/D-PBI, MOEA/D-PBI with objective

space normalization, and MOEA/D-PBI with weight vector

modification are compared. Experimental results show that

MOEA/D-PBI with weight vector modification is more robust.

Sun et al. [92] proposed a reference point generation method

for IGD calculation in MaOEA/IGD [92]. The reference points

for IGD calculation are generated by rescaling and transferring

the points generated by the Das and Dennis’s method [86]

using the ideal and nadir points. This method has also been

used in MaOEA-IT [93].

D. Discussions and Summary

In summary, the survey of studies on normalization with the

estimated Pareto range reveals the following.

- In [117], the value of the parameter β in Eq. (21)

is automatically tuned for each problem to reduce the

negative effects of normalization. It is interesting to

design a robust normalization method by automatically

selecting appropriate methods for ideal point estimation,

nadir point estimation and the use of the estimated range.

- The effects of reference point specification in

decomposition-based MOEAs have been well studied

[12]. While reference point specification is closely

related to objective space normalization, the effects

of these two factors have not been discussed in a

unified manner. Addition of the same small value

to the numerator and the denominator of the basic

normalization formulation may have a positive effect

for decomposition-based MOEAs since it is equivalent

to the use of a utopian point as the reference point.

- The estimated range of the Pareto front can be very small

in some objectives, especially when population diversity

is poor. Different measures have been taken to prevent

the normalization from being too much or too small [33],

[52], [53]. It is interesting to compare these measures

and examine their effectiveness.
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- For constrained MOPs, constraint information can be

used to control the timing of normalization as in C-

TAEA [119] to avoid improper normalization.

- The inaccuracy of the estimated Pareto front range at

early generations should be considered as in [108],

[109], [120], [121]. The reliance of normalization on

the estimated range can be controlled according to the

accuracy of the estimated range.

- For MOEAs with weight vectors or reference vectors,

the weight/reference vector scaling can be an alternative

way of normalization as in RVEA [67], AR-MOEA [72],

and MaOEA/IGD [92]. It is interesting to compare the

weight/reference vector scaling with the objective space

normalization methods. The frequency of performing

the weight/reference vector scaling is also an interesting

topic that is worth investigating.

VI. FURTHER DISCUSSIONS ON THE EFFECT OF

NORMALIZATION

In the previous sections, we have surveyed various objective

space normalization methods, including ideal point estimation

methods, nadir point estimation methods, and different meth-

ods based on the utilization of the estimated Pareto front range.

In this section, we attempt to further discuss the effect of

normalization.

In an MOEA, solutions are ranked based on a certain

comparison method for environmental selection (and mating

selection). When the ordering of solutions is not affected by

the scaling of the objectives, the comparison method is scaling

invariant or scaling independent [123], [124]. The scaling

invariance in the ranking of solutions is an important property

since the ranking result with this property does not depend

on the absolute objective function values [124]. For example,

if a comparison method is not scaling invariant, the ranking

result of solutions can be changed by the choice of a unit

for length such as “mm”, “cm” and “m”. Since the scaling-

invariant property is closely related to the effect of objective

space normalization, we discuss this property by explaining

some related theorems.

To the best of the authors’ knowledge, only two types of

comparison methods that are not dependent on scaling are as

follows [123], [125], [126],

1) Objective-wise comparison (e.g., favour relation [127],

Pareto dominance relation [54]);

2) Volume-based comparison (e.g., hypervolume indicator

[126], IHD [64]).

These two types of comparison methods are scaling in-

variant as shown by the following theorems (For proofs of

Theorem 2-4, refer to the supplementary document.):

Theorem 2. Let x ∈ R
m and y ∈ R

m be two solutions

in the objective space. The objective-wise comparison (i.e.,

comparing the values of each objective independently from

the others) between x and y is scaling invariant.

Theorem 3. Let x ∈ R
m and y ∈ R

m be two solutions in the

objective space. The comparison between the volume covered

by x and the volume covered by y is scaling invariant.
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Fig. 13. Solutions obtained by IBEAHD with the median hypervolume value
over 21 runs on the three-objective WFG4. Experimental settings are the same
as [12].

In the ranking of solutions for environmental selection (and

mating selection), the given m objectives are combined to

calculate a single scalar fitness value for each solution. Except

for the abovementioned two types of comparison methods,

the comparison result of solutions depends on the scaling of

each objective [123], [126]. Objective space normalization is

necessary in order to treat different objectives equally.

Theorem 4. Let x ∈ R
m and y ∈ R

m be two solutions in the

objective space. When the fitness values of solutions are ob-

tained by adding different objectives together, the comparison

between x and y is not scaling invariant.

Based on Theorem 2-4, MOEAs can be classified into

three classes: scaling-independent MOEAs, scaling-insensitive

MOEAs, and scaling-sensitive MOEAs. In the following, these

three classes are briefly explained.

When only scaling-independent comparisons are used in the

environmental selection, the MOEA is scaling independent.

SMS-EMOA [128], HypE [129], and FV-EMOA [130] are

representative scaling-independent MOEAs since only Pareto

dominance relation and hypervolume are used in the environ-

mental selection. In these algorithms, the Pareto dominance

relation is used as the first selection criteria to emphasize

convergence, and the diversity is maintained using the hyper-

volume indicator. IBEAHD [64] is also a scaling-independent

MOEA since only the scaling-independent indicator IHD

[64] is used in environmental selection. These MOEAs are

able to deal with MOPs with differently-scaled objectives

without objective space normalization. As shown in Fig. 13,

similar solution sets are obtained by IBEAHD with and without

normalization on the three-objective WFG4.

In MOEAs with only distance-based fitness evaluation

mechanisms in environmental selection (e.g., MOEA/D [20]

and 1by1EA [33]), normalization is necessary in order to deal

with MOPs with differently-scaled objectives [123]. These

MOEAs are categorized as scaling-sensitive MOEAs. That

is, these MOEAs are sensitive to normalization. The use of

objective space normalization in these MOEAs often leads

to poor results on MOPs with similar objective ranges (i.e.,

MOPs for which the normalization is not needed) when the

estimated ideal and nadir points are inaccurate during the

evolutionary process [12], [33].

In NSGA-II [54], SPEA2 [131], NSGA-III [21], and θ-

DEA [26], solutions are forced to converge to the Pareto front
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Fig. 14. Solutions obtained by NSGA-III with the median hypervolume value
over 21 runs on the three-objective DTLZ3. Experimental settings are the same
as [12].

by Pareto dominance-based fitness evaluation mechanisms.

However, normalization is still needed because of the use

of distance-based density measures (e.g., crowding distance,

k nearest neighbor, weight vectors) to emphasize diversity

[132]. These MOEAs, which are categorized as scaling-

insensitive MOEAs, are less sensitive to normalization com-

pared to MOEAs with only distance-based fitness evaluation

mechanisms (e.g., MOEA/D [20]). As shown in Fig. 14,

well-distributed solutions are obtained by NSGA-III with or

without normalization on the three-objective DTLZ3. That is,

a normalization method does not affect the performance of

NSGA-III on the three-objective DTLZ3 (see Fig. 14), while

it affects the performance of MOEA/D on the three-objective

DTLZ3 (see Fig. 4).

It is worth noting that although the hypervolume calculation

has the scaling-independent property, it is very computation-

ally expensive, which makes it inappropriate when the number

of objectives is large. To reduce the computational cost of

hypervolume calculation, several works have been proposed to

approximate the hypervolume instead of calculating it exactly.

For example, the hypervolume contribution is approximated

by the R2 indicator RHVC
2

[133] in R2HCA-EMOA [75].

However, although this approximation can significantly reduce

the computational cost of hypervolume calculation, it makes

normalization a necessary part. In addition, the reference point

specification for many-objective problems can be recognized

as the main difficulty in the use of the hypervolume indicator

[134], [135]. As reported in [134], [135], while the hyper-

volume indicator is scaling invariant, it is sensitive to the

location of the reference point. The ordering of solutions in

environmental selection strongly depends on the location of

the reference point. Moreover, the reference point specification

usually depends on the estimated nadir point, which is closely

related to objective space normalization. In this sense, only

the first type of comparison methods can be viewed as purely

independent of objective space normalization.

VII. CONCLUSION AND FUTURE DIRECTIONS

As an independent algorithmic component, objective space

normalization plays an important role in the design of MOEAs

since the objectives of a real-world MOP by nature are often

of very different scales. This paper comprehensively surveyed

studies on normalization methods in three parts: ideal point

estimation, nadir point estimation, and objective space nor-

malization methods (including weight/reference vector mod-

ification methods). From the analysis of each normalization

method, we found that although a number of attempts have

been made in objective space normalization, there is still lack

of an effective and robust normalization method for MOEAs,

and consequently, it is still an open research area. Some

directions worth pursing in the future are summarized below.

1) The ideal points estimated by the straightforward meth-

ods are usually inaccurate at early generations since

the population at early generations is far away from

the true Pareto front. Dynamic ideal point estimation

methods [57], [58] have been used in MOEA/D and

promising results are obtained on MOPs with similar

objective ranges. It is worth investigating whether these

methods can help to estimate a more accurate ideal point

for objective space normalization.

2) The straightforward nadir point estimation methods can-

not accurately estimate the nadir point when the avail-

able solution set is not appropriate for the estimation

(e.g., due to the inclusion of DRSs). DRS removal

strategies (as in [49], g-DBEA [101], and PaRP/EA

[91]) and convergence information (as in [55], [106] and

MOMBI-II [104]) can be used to improve the quality of

the solution set or remedy the inaccurate nadir point.

3) Extreme points are important for nadir point estimation.

Emphasizing the importance of extreme points by adopt-

ing an extreme-point-first principle in algorithm design

as in MaOEA/D-2ADV [69], B-NSGA-III [97], and

VaEA [62] may improve the accuracy of the estimated

nadir point and make an MOEA more robust in dealing

with real-world MOPs.

4) Most of the extreme point identification methods are

based on the assumption that the Pareto front is either

regular triangular or inverted triangular. It is interesting

to consider corner solutions [87], which are selected

from the union of solutions identified by the methods

of the previous two categories.

5) In [89], starting from the extreme point e1 identified

by Eq. (7), the solutions with the farthest distance from

the identified solutions are selected one by one. This

method guarantees that at least m− 1 corner points can

be correctly identified. It is interesting to examine if m
corner points can be correctly identified by discarding

the first identified extreme point and finding another

solution farthest from the identified solutions.

6) In axis vector-based extreme point identification meth-

ods, the closeness of a solution to each axis vector is

defined in many different ways, as shown in Fig. 10. It

is interesting to investigate their difference.

7) The estimated range of the Pareto front can be very small

in some objectives, especially when population diversity

is poor. Different measures have been taken to prevent

the normalization from being too much or too small [33],

[52], [53]. It is interesting to compare these measures

and examine their effectiveness.

8) Investigation into the impact of objective space normal-

ization should also be carried out for constrained MOPs.
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For constrained MOPs, the constraint information can

also be considered for better nadir point estimation [60].

It can be used to control the timing of normalization to

avoid improper normalization [119].

9) At early generations of MOEAs, the current population

cannot be used to accurately approximate the shape of

the Pareto front. As a result, the estimated ideal and

nadir points are likely to be inaccurate. It is interesting

to dynamically adjust the extent of normalization based

on the accuracy (reliability) of the estimated ideal and

nadir points as in [108], [109], [120].

10) For MOEAs with weight/reference vectors, the

weight/reference vector scaling can be an alternative

way of normalization as in RVEA [67], AR-MOEA

[72], and MaOEA/IGD [92]. It is interesting to

compare the weight/reference vector scaling with the

objective space normalization methods. The effect of

the frequency of performing the weight/reference vector

scaling and the nadir point update is also an interesting

research topic.

11) Although a substantial number of methods have been

proposed for objective space normalization, there is

still lack of a benchmarking study of these methods.

No metric has been proposed to measure the effect of

normalization.

12) In [117], the value of the parameter β in Eq. (21) is auto-

matically tuned for each problem to reduce the negative

effects of normalization. It is interesting to configure a

robust normalization method by automatically selecting

an appropriate method for each of the three components

of normalization (i.e., ideal point estimation, nadir point

estimation, and the use of the estimated range).

13) Scaling-independent comparison methods are encour-

aged in MOEA design to reduce its sensitivity to the

inaccurately estimated ideal and nadir points. Design of

scaling-independent MOEAs can be a promising future

direction.

14) For all of the abovementioned topics, it is important to

use realistic MOPs (e.g., [6]). Design of realistic test

suites is also an important future research topic.
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[104] R. Hernández Gómez and C. A. Coello Coello, “Improved metaheuris-
tic based on the R2 indicator for many-objective optimization,” in Proc.

Conf. Genet. Evol. Comput., Madrid, Spain, Jul. 2015, pp. 679–686.
[105] J. G. Falcón-Cardona and C. A. Coello Coello, “A new indicator-based

many-objective ant colony optimizer for continuous search spaces,”
Swarm. Intell., vol. 11, no. 1, pp. 71–100, Mar. 2017.

[106] Y. Qi, J. Yu, X. Li, Y. Quan, and Q. Miao, “Enhancing robustness of
the inverted PBI scalarizing method in MOEA/D,” Appl. Soft Comput.,
vol. 71, pp. 1117–1132, Oct. 2018.

[107] H. Sato, “Analysis of inverted PBI and comparison with other scalariz-
ing functions in decomposition based MOEAs,” Journal of Heuristics,
vol. 21, no. 6, pp. 819–849, 2015.

[108] D. K. Saxena and S. Kapoor, “On timing the nadir-point estimation
and/or termination of reference-based multi- and many-objective evo-
lutionary algorithms,” in Proc. Evol. Multi-Criter. Optim., vol. 11411,
East Lansing, MI, USA, Mar. 2019, pp. 191–202.

[109] D. K. Saxena, S. Mittal, S. Kapoor, and K. Deb, “A localized high fi-
delity dominance based many-objective evolutionary algorithm,” COIN
Lab, Michigan State University, COIN Report No. 2021002, Jan. 2021.

[110] H.-L. Liu, F. Gu, and Q. Zhang, “Decomposition of a multiobjective
optimization problem into a number of simple multiobjective subprob-
lems,” IEEE Trans. Evol. Comput., vol. 18, no. 3, pp. 450–455, Jun.
2014.

[111] T. Kohira, H. Kemmotsu, O. Akira, and T. Tatsukawa, “Proposal of
benchmark problem based on real-world car structure design optimiza-
tion,” in Proc. Conf. Genet. Evol. Comput., Kyoto, Japan, Jul. 2018,
pp. 183–184.

[112] H. Ishibuchi, L. He, and K. Shang, “Regular Pareto front shape is
not realistic,” in Proc. IEEE Congr. Evol. Comput., Wellington, New
Zealand, Jun. 2019, pp. 2034–2041.

[113] R. E. Steuer and R. Steuer, Multiple Criteria Optimization: Theory,

Computation, and Application. Wiley New York, 1986.
[114] E. Zitzler, L. Thiele, M. Laumanns, C. Fonseca, and V. da Fonseca,

“Performance assessment of multiobjective optimizers: An analysis and
review,” IEEE Trans. Evol. Comput., vol. 7, no. 2, pp. 117–132, Apr.
2003.

[115] R. Cheng and M. Gen, “Evolution program for resource constrained
project scheduling problem,” in Proc. IEEE Congr. Evol. Comput.,
vol. 2, Orlando, FL, USA, Jun. 1994, pp. 736–741.

[116] R. Cheng and M. Gen, Genetic Algorithms and Engineering Design.
John Wiley, 1997.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on July 05,2021 at 12:03:38 UTC from IEEE Xplore.  Restrictions apply. 



1089-778X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2021.3076514, IEEE
Transactions on Evolutionary Computation

21

[117] L. M. Pang, H. Ishibuchi, and K. Shang, “Decomposition-based multi-
objective evolutionary algorithm design under two algorithm frame-
works,” IEEE Access, vol. 8, pp. 163 197–163 208, 2020.

[118] Z.-Z. Liu and Y. Wang, “Handling constrained multiobjective opti-
mization problems with constraints in both the decision and objective
spaces,” IEEE Trans. Evol. Comput., vol. 23, no. 5, pp. 870–884, Oct.
2019.

[119] K. Li, R. Chen, G. Fu, and X. Yao, “Two-archive evolutionary
algorithm for constrained multiobjective optimization,” IEEE Trans.

Evol. Comput., vol. 23, no. 2, pp. 303–315, Apr. 2019.
[120] L. He, H. Ishibuchi, A. Trivedi, and D. Srinivasan, “Dynamic normal-

ization in MOEA/D for multiobjective optimization,” in Proc. IEEE

Congr. Evol. Comput., Glasgow, Scotland, United Kingdom, Jul. 2020.
[121] L. He, K. Shang, and H. Ishibuchi, “Simultaneous use of two normal-

ization methods in decomposition-based multi-objective evolutionary
algorithms,” Appl. Soft Comput., vol. 92, Jul. 2020.

[122] I. Giagkiozis, R. C. Purshouse, and P. J. Fleming, “Towards under-
standing the cost of adaptation in decomposition-based optimization
algorithms,” in IEEE Int. Conf. Syst., Man, Cybern., Manchester, UK,
Oct. 2013, pp. 615–620.

[123] J. D. Knowles, “Local-search and hybrid evolutionary algorithms for
Pareto optimization,” phdthesis, Department of Computer Science,
University of Reading, Reading, U.K., Jan. 2002.

[124] E. Zitzler, J. Knowles, and L. Thiele, “Quality assessment of Pareto set
approximations,” in Multiobjective Optimization. Berlin, Heidelberg:
Springer, 2008, vol. 5252, pp. 373–404.

[125] E. Zitzler, “Evolutionary algorithms for multiobjective optimization:
Methods and applications,” PhD Dissertation, Swiss Federal Institute
of Technology, Zurich, Switzerland, Nov. 1999.

[126] J. Knowles and D. Corne, “On metrics for comparing nondominated
sets,” in Proc. IEEE Congr. Evol. Comput., Honolulu, HI, USA, 2002,
pp. 711–716.

[127] N. Drechsler, R. Drechsler, and B. Becker, “Multi-objective optimi-
sation based on relation favour,” in Proc. Evol. Multi-Criter. Optim.,
Zurich, Switzerland, Mar. 2001, pp. 154–166.

[128] N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjec-
tive selection based on dominated hypervolume,” European Journal of

Operational Research, vol. 181, no. 3, pp. 1653–1669, Sep. 2007.
[129] J. Bader and E. Zitzler, “HypE: An algorithm for fast hypervolume-

based many-objective optimization,” Evol. Comput., vol. 19, no. 1, pp.
45–76, Mar. 2011.

[130] S. Jiang, J. Zhang, Y.-S. Ong, A. N. Zhang, and P. S. Tan, “A sim-
ple and fast hypervolume indicator-based multiobjective evolutionary
algorithm,” IEEE Trans. Cybern., vol. 45, no. 10, pp. 2202–2213, Oct.
2015.

[131] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
strength Pareto evolutionary algorithm,” TIK-report, vol. 103, 2001.

[132] A. J. Keane, “Statistical improvement criteria for use in multiobjective
design optimization,” AIAA Journal, vol. 44, no. 4, pp. 879–891, Apr.
2006.

[133] K. Shang, H. Ishibuchi, and X. Ni, “R2-based hypervolume contri-
bution approximation,” IEEE Trans. Evol. Comput., Apr. 2019 (Early
Access).

[134] H. Ishibuchi, R. Imada, Y. Setoguchi, and Y. Nojima, “Reference
point specification in hypervolume calculation for fair comparison and
efficient search,” in Proc. Conf. Genet. Evol. Comput., Jul. 2017, pp.
585–592.

[135] ——, “How to specify a reference point in hypervolume calculation
for fair performance comparison,” Evol. Comput., vol. 26, no. 3, pp.
411–440, Sep. 2018.

Linjun He received the B.Eng. degree in electri-
cal and electronic engineering from the Southern
University of Science and Technology (SUSTech),
Shenzhen, China, in July 2018. He is currently
pursuing the Ph.D. degree with the Department of
Electrical and Computer Engineering, National Uni-
versity of Singapore, Singapore. His research inter-
ests include evolutionary multi-objective optimiza-
tion, large-scale optimization, and machine learning.

Hisao Ishibuchi (M’93–SM’10–F’14) received the
B.S. and M.S. degrees from Kyoto University in
1985 and 1987, respectively, and the Ph.D. de-
gree from Osaka Prefecture University in 1992.
He was with Osaka Prefecture University in 1987-
2017. Since 2017, he is a Chair Professor at
Southern University of Science and Technology,
China. His research interests include fuzzy rule-
based classifiers, evolutionary multi-objective and
many-objective optimization, memetic algorithms,
and evolutionary games. Dr. Ishibuchi was the IEEE

CIS Vice-President for Technical Activities in 2010-2013 and the Editor-in-
Chief of the IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE in
2014-2019. Currently he is an AdCom member of the IEEE CIS (2014-2019,
2021-2023).

Anupam Trivedi (M’15) received the dual degree
(integrated bachelor’s and master’s) in civil engi-
neering from the Indian Institute of Technology
Bombay, Mumbai, India, in 2009, and the Ph.D.
degree in electrical and computer engineering from
the National University of Singapore, Singapore, in
2015. He is currently a Senior Research Fellow at the
National University of Singapore. His research inter-
ests include evolutionary algorithms, multi-objective
optimization, constrained optimization, and smart
grid optimization.

Handing Wang (S’10-M’16) received the B.Eng.
and Ph.D. degrees from Xidian University, Xi’an,
China, in 2010 and 2015, respectively. She is cur-
rently a professor with School of Artificial In-
telligence, Xidian University, Xi’an, China. Dr.
Wang is an Associate Editor of IEEE Computa-
tional Intelligence Magazine, Memetic Computing,
and Complex & Intelligent Systems. Her research
interests include nature-inspired computation, mul-
tiobjective optimization, multiple criteria decision
making, surrogate-assisted evolutionary optimiza-

tion, and real-world problems.

Yang Nan received his B.S. degree in Electrical and
Electronic Engineering with the Southern University
of Science and Technology (SUSTech), Shenzhen,
China, in July 2018. He is currently a research
assistant at the Department of Electrical and Com-
puter Engineering in SUSTech. His current research
interests include evolutionary multi-objective opti-
mization and its applications.

Dipti Srinivasan (M’89–SM’02) received her M.S.
and Ph.D. degrees from National University of Sin-
gapore, Singapore, in 1991 and 1994, respectively.
She is currently a professor with the Department
of Electrical & Computer Engineering, National
University of Singapore. Her recent research projects
are in the broad areas of optimization and control,
wind and solar power prediction, electricity price
prediction, deep learning, and development of multi-
agent systems for system operation and control.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on July 05,2021 at 12:03:38 UTC from IEEE Xplore.  Restrictions apply. 


